Step |
Hyp |
Ref |
Expression |
1 |
|
0ellimcdiv.f |
|- F = ( x e. A |-> B ) |
2 |
|
0ellimcdiv.g |
|- G = ( x e. A |-> C ) |
3 |
|
0ellimcdiv.h |
|- H = ( x e. A |-> ( B / C ) ) |
4 |
|
0ellimcdiv.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
5 |
|
0ellimcdiv.c |
|- ( ( ph /\ x e. A ) -> C e. ( CC \ { 0 } ) ) |
6 |
|
0ellimcdiv.0limf |
|- ( ph -> 0 e. ( F limCC E ) ) |
7 |
|
0ellimcdiv.d |
|- ( ph -> D e. ( G limCC E ) ) |
8 |
|
0ellimcdiv.dne0 |
|- ( ph -> D =/= 0 ) |
9 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
10 |
5
|
eldifad |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
11 |
10 2
|
fmptd |
|- ( ph -> G : A --> CC ) |
12 |
1 4 6
|
limcmptdm |
|- ( ph -> A C_ CC ) |
13 |
|
limcrcl |
|- ( D e. ( G limCC E ) -> ( G : dom G --> CC /\ dom G C_ CC /\ E e. CC ) ) |
14 |
7 13
|
syl |
|- ( ph -> ( G : dom G --> CC /\ dom G C_ CC /\ E e. CC ) ) |
15 |
14
|
simp3d |
|- ( ph -> E e. CC ) |
16 |
11 12 15
|
ellimc3 |
|- ( ph -> ( D e. ( G limCC E ) <-> ( D e. CC /\ A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) ) ) ) |
17 |
7 16
|
mpbid |
|- ( ph -> ( D e. CC /\ A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) ) ) |
18 |
17
|
simprd |
|- ( ph -> A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) ) |
19 |
17
|
simpld |
|- ( ph -> D e. CC ) |
20 |
19 8
|
absrpcld |
|- ( ph -> ( abs ` D ) e. RR+ ) |
21 |
20
|
rphalfcld |
|- ( ph -> ( ( abs ` D ) / 2 ) e. RR+ ) |
22 |
|
breq2 |
|- ( y = ( ( abs ` D ) / 2 ) -> ( ( abs ` ( ( G ` v ) - D ) ) < y <-> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) |
23 |
22
|
imbi2d |
|- ( y = ( ( abs ` D ) / 2 ) -> ( ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) <-> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) ) |
24 |
23
|
rexralbidv |
|- ( y = ( ( abs ` D ) / 2 ) -> ( E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) <-> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) ) |
25 |
24
|
rspccva |
|- ( ( A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) /\ ( ( abs ` D ) / 2 ) e. RR+ ) -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) |
26 |
18 21 25
|
syl2anc |
|- ( ph -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) |
27 |
|
simpl1l |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ph ) |
28 |
|
simpl3 |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> v e. A ) |
29 |
|
simpr |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) |
30 |
|
simpl2 |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) ) |
31 |
28 29 30
|
mp2d |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) |
32 |
20
|
rpcnd |
|- ( ph -> ( abs ` D ) e. CC ) |
33 |
32
|
2halvesd |
|- ( ph -> ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) = ( abs ` D ) ) |
34 |
33
|
eqcomd |
|- ( ph -> ( abs ` D ) = ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) ) |
35 |
34
|
oveq1d |
|- ( ph -> ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) = ( ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) - ( ( abs ` D ) / 2 ) ) ) |
36 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
37 |
|
2ne0 |
|- 2 =/= 0 |
38 |
37
|
a1i |
|- ( ph -> 2 =/= 0 ) |
39 |
19 36 38
|
absdivd |
|- ( ph -> ( abs ` ( D / 2 ) ) = ( ( abs ` D ) / ( abs ` 2 ) ) ) |
40 |
|
2re |
|- 2 e. RR |
41 |
40
|
a1i |
|- ( ph -> 2 e. RR ) |
42 |
|
0le2 |
|- 0 <_ 2 |
43 |
42
|
a1i |
|- ( ph -> 0 <_ 2 ) |
44 |
41 43
|
absidd |
|- ( ph -> ( abs ` 2 ) = 2 ) |
45 |
44
|
oveq2d |
|- ( ph -> ( ( abs ` D ) / ( abs ` 2 ) ) = ( ( abs ` D ) / 2 ) ) |
46 |
39 45
|
eqtr2d |
|- ( ph -> ( ( abs ` D ) / 2 ) = ( abs ` ( D / 2 ) ) ) |
47 |
46
|
oveq2d |
|- ( ph -> ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) = ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) ) |
48 |
21
|
rpcnd |
|- ( ph -> ( ( abs ` D ) / 2 ) e. CC ) |
49 |
48 48
|
pncand |
|- ( ph -> ( ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) - ( ( abs ` D ) / 2 ) ) = ( ( abs ` D ) / 2 ) ) |
50 |
35 47 49
|
3eqtr3rd |
|- ( ph -> ( ( abs ` D ) / 2 ) = ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) ) |
51 |
50
|
3ad2ant1 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) / 2 ) = ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) ) |
52 |
46
|
eqcomd |
|- ( ph -> ( abs ` ( D / 2 ) ) = ( ( abs ` D ) / 2 ) ) |
53 |
52
|
3ad2ant1 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D / 2 ) ) = ( ( abs ` D ) / 2 ) ) |
54 |
53
|
oveq2d |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) = ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) ) |
55 |
19
|
adantr |
|- ( ( ph /\ v e. A ) -> D e. CC ) |
56 |
55
|
abscld |
|- ( ( ph /\ v e. A ) -> ( abs ` D ) e. RR ) |
57 |
56
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` D ) e. RR ) |
58 |
11
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( G ` v ) e. CC ) |
59 |
58
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( G ` v ) e. CC ) |
60 |
59
|
abscld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( G ` v ) ) e. RR ) |
61 |
19
|
3ad2ant1 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> D e. CC ) |
62 |
61 59
|
subcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( D - ( G ` v ) ) e. CC ) |
63 |
62
|
abscld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D - ( G ` v ) ) ) e. RR ) |
64 |
60 63
|
readdcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) e. RR ) |
65 |
57
|
rehalfcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) / 2 ) e. RR ) |
66 |
60 65
|
readdcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) e. RR ) |
67 |
58 55
|
pncan3d |
|- ( ( ph /\ v e. A ) -> ( ( G ` v ) + ( D - ( G ` v ) ) ) = D ) |
68 |
67
|
eqcomd |
|- ( ( ph /\ v e. A ) -> D = ( ( G ` v ) + ( D - ( G ` v ) ) ) ) |
69 |
68
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` D ) = ( abs ` ( ( G ` v ) + ( D - ( G ` v ) ) ) ) ) |
70 |
55 58
|
subcld |
|- ( ( ph /\ v e. A ) -> ( D - ( G ` v ) ) e. CC ) |
71 |
58 70
|
abstrid |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( G ` v ) + ( D - ( G ` v ) ) ) ) <_ ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) ) |
72 |
69 71
|
eqbrtrd |
|- ( ( ph /\ v e. A ) -> ( abs ` D ) <_ ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) ) |
73 |
72
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` D ) <_ ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) ) |
74 |
61 59
|
abssubd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D - ( G ` v ) ) ) = ( abs ` ( ( G ` v ) - D ) ) ) |
75 |
|
simp3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) |
76 |
74 75
|
eqbrtrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D - ( G ` v ) ) ) < ( ( abs ` D ) / 2 ) ) |
77 |
63 65 60 76
|
ltadd2dd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) < ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) ) |
78 |
57 64 66 73 77
|
lelttrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` D ) < ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) ) |
79 |
58
|
abscld |
|- ( ( ph /\ v e. A ) -> ( abs ` ( G ` v ) ) e. RR ) |
80 |
79
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( G ` v ) ) e. RR ) |
81 |
57 65 80
|
ltsubaddd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) < ( abs ` ( G ` v ) ) <-> ( abs ` D ) < ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) ) ) |
82 |
78 81
|
mpbird |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) < ( abs ` ( G ` v ) ) ) |
83 |
54 82
|
eqbrtrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) < ( abs ` ( G ` v ) ) ) |
84 |
51 83
|
eqbrtrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
85 |
27 28 31 84
|
syl3anc |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
86 |
85
|
3exp1 |
|- ( ( ph /\ z e. RR+ ) -> ( ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) -> ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) ) ) |
87 |
86
|
ralimdv2 |
|- ( ( ph /\ z e. RR+ ) -> ( A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) ) |
88 |
87
|
reximdva |
|- ( ph -> ( E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) ) |
89 |
26 88
|
mpd |
|- ( ph -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
90 |
89
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
91 |
|
simpr |
|- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
92 |
19
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> D e. CC ) |
93 |
8
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> D =/= 0 ) |
94 |
92 93
|
absrpcld |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` D ) e. RR+ ) |
95 |
94
|
rphalfcld |
|- ( ( ph /\ y e. RR+ ) -> ( ( abs ` D ) / 2 ) e. RR+ ) |
96 |
91 95
|
rpmulcld |
|- ( ( ph /\ y e. RR+ ) -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) |
97 |
96
|
ex |
|- ( ph -> ( y e. RR+ -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) |
98 |
97
|
imdistani |
|- ( ( ph /\ y e. RR+ ) -> ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) |
99 |
|
eleq1 |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( w e. RR+ <-> ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) |
100 |
99
|
anbi2d |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( ph /\ w e. RR+ ) <-> ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) ) |
101 |
|
breq2 |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( ( F ` v ) - 0 ) ) < w <-> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
102 |
101
|
imbi2d |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) <-> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) |
103 |
102
|
rexralbidv |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) <-> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) |
104 |
100 103
|
imbi12d |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( ( ph /\ w e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) <-> ( ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) ) |
105 |
4 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
106 |
105 12 15
|
ellimc3 |
|- ( ph -> ( 0 e. ( F limCC E ) <-> ( 0 e. CC /\ A. w e. RR+ E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) ) ) |
107 |
6 106
|
mpbid |
|- ( ph -> ( 0 e. CC /\ A. w e. RR+ E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) ) |
108 |
107
|
simprd |
|- ( ph -> A. w e. RR+ E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) |
109 |
108
|
r19.21bi |
|- ( ( ph /\ w e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) |
110 |
104 109
|
vtoclg |
|- ( ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ -> ( ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) |
111 |
96 98 110
|
sylc |
|- ( ( ph /\ y e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
112 |
111
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
113 |
|
simp12 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> z e. RR+ ) |
114 |
|
simp2 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> u e. RR+ ) |
115 |
113 114
|
ifcld |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> if ( z <_ u , z , u ) e. RR+ ) |
116 |
|
nfv |
|- F/ v ( ph /\ y e. RR+ ) |
117 |
|
nfv |
|- F/ v z e. RR+ |
118 |
|
nfra1 |
|- F/ v A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
119 |
116 117 118
|
nf3an |
|- F/ v ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
120 |
|
nfv |
|- F/ v u e. RR+ |
121 |
|
nfra1 |
|- F/ v A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
122 |
119 120 121
|
nf3an |
|- F/ v ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
123 |
|
simp111 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ph /\ y e. RR+ ) ) |
124 |
|
simp112 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> z e. RR+ ) |
125 |
|
simp12 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> u e. RR+ ) |
126 |
123 124 125
|
jca31 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) ) |
127 |
|
simp2 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> v e. A ) |
128 |
|
simp3l |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> v =/= E ) |
129 |
126 127 128
|
jca31 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) ) |
130 |
12
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> A C_ CC ) |
131 |
130
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> A C_ CC ) |
132 |
131
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> A C_ CC ) |
133 |
132
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> A C_ CC ) |
134 |
133 127
|
sseldd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> v e. CC ) |
135 |
15
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> E e. CC ) |
136 |
135
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> E e. CC ) |
137 |
136
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> E e. CC ) |
138 |
137
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> E e. CC ) |
139 |
134 138
|
subcld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( v - E ) e. CC ) |
140 |
139
|
abscld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) e. RR ) |
141 |
124
|
rpred |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> z e. RR ) |
142 |
125
|
rpred |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> u e. RR ) |
143 |
141 142
|
ifcld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> if ( z <_ u , z , u ) e. RR ) |
144 |
|
simp3r |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) |
145 |
|
min1 |
|- ( ( z e. RR /\ u e. RR ) -> if ( z <_ u , z , u ) <_ z ) |
146 |
141 142 145
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> if ( z <_ u , z , u ) <_ z ) |
147 |
140 143 141 144 146
|
ltletrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) < z ) |
148 |
|
simp113 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
149 |
|
rspa |
|- ( ( A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ v e. A ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
150 |
148 127 149
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
151 |
128 147 150
|
mp2and |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
152 |
|
simp13 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
153 |
|
rspa |
|- ( ( A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
154 |
152 127 153
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
155 |
|
min2 |
|- ( ( z e. RR /\ u e. RR ) -> if ( z <_ u , z , u ) <_ u ) |
156 |
141 142 155
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> if ( z <_ u , z , u ) <_ u ) |
157 |
140 143 142 144 156
|
ltletrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) < u ) |
158 |
128 157
|
jca |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) |
159 |
123
|
simpld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ph ) |
160 |
159
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ph ) |
161 |
|
simp12 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> v e. A ) |
162 |
|
nfv |
|- F/ x ( ph /\ v e. A ) |
163 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
164 |
1 163
|
nfcxfr |
|- F/_ x F |
165 |
|
nfcv |
|- F/_ x v |
166 |
164 165
|
nffv |
|- F/_ x ( F ` v ) |
167 |
166
|
nfel1 |
|- F/ x ( F ` v ) e. CC |
168 |
162 167
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) |
169 |
|
eleq1 |
|- ( x = v -> ( x e. A <-> v e. A ) ) |
170 |
169
|
anbi2d |
|- ( x = v -> ( ( ph /\ x e. A ) <-> ( ph /\ v e. A ) ) ) |
171 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
172 |
171
|
eleq1d |
|- ( x = v -> ( ( F ` x ) e. CC <-> ( F ` v ) e. CC ) ) |
173 |
170 172
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) <-> ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) ) ) |
174 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
175 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B ) |
176 |
174 4 175
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
177 |
176 4
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
178 |
168 173 177
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) |
179 |
178
|
subid1d |
|- ( ( ph /\ v e. A ) -> ( ( F ` v ) - 0 ) = ( F ` v ) ) |
180 |
179
|
eqcomd |
|- ( ( ph /\ v e. A ) -> ( F ` v ) = ( ( F ` v ) - 0 ) ) |
181 |
180
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( F ` v ) ) = ( abs ` ( ( F ` v ) - 0 ) ) ) |
182 |
160 161 181
|
syl2anc |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( abs ` ( F ` v ) ) = ( abs ` ( ( F ` v ) - 0 ) ) ) |
183 |
|
simp3 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) |
184 |
|
simp2 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
185 |
183 184
|
mpd |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
186 |
182 185
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
187 |
154 158 186
|
mpd3an23 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
188 |
|
simp-7l |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ph ) |
189 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> v e. A ) |
190 |
|
eldifsni |
|- ( C e. ( CC \ { 0 } ) -> C =/= 0 ) |
191 |
5 190
|
syl |
|- ( ( ph /\ x e. A ) -> C =/= 0 ) |
192 |
4 10 191
|
divcld |
|- ( ( ph /\ x e. A ) -> ( B / C ) e. CC ) |
193 |
192 3
|
fmptd |
|- ( ph -> H : A --> CC ) |
194 |
193
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( H ` v ) e. CC ) |
195 |
194
|
subid1d |
|- ( ( ph /\ v e. A ) -> ( ( H ` v ) - 0 ) = ( H ` v ) ) |
196 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> ( B / C ) ) |
197 |
3 196
|
nfcxfr |
|- F/_ x H |
198 |
197 165
|
nffv |
|- F/_ x ( H ` v ) |
199 |
|
nfcv |
|- F/_ x / |
200 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> C ) |
201 |
2 200
|
nfcxfr |
|- F/_ x G |
202 |
201 165
|
nffv |
|- F/_ x ( G ` v ) |
203 |
166 199 202
|
nfov |
|- F/_ x ( ( F ` v ) / ( G ` v ) ) |
204 |
198 203
|
nfeq |
|- F/ x ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) |
205 |
162 204
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) |
206 |
|
fveq2 |
|- ( x = v -> ( H ` x ) = ( H ` v ) ) |
207 |
|
fveq2 |
|- ( x = v -> ( G ` x ) = ( G ` v ) ) |
208 |
171 207
|
oveq12d |
|- ( x = v -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` v ) / ( G ` v ) ) ) |
209 |
206 208
|
eqeq12d |
|- ( x = v -> ( ( H ` x ) = ( ( F ` x ) / ( G ` x ) ) <-> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) ) |
210 |
170 209
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) / ( G ` x ) ) ) <-> ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) ) ) |
211 |
3
|
fvmpt2 |
|- ( ( x e. A /\ ( B / C ) e. CC ) -> ( H ` x ) = ( B / C ) ) |
212 |
174 192 211
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( B / C ) ) |
213 |
176
|
eqcomd |
|- ( ( ph /\ x e. A ) -> B = ( F ` x ) ) |
214 |
2
|
fvmpt2 |
|- ( ( x e. A /\ C e. ( CC \ { 0 } ) ) -> ( G ` x ) = C ) |
215 |
174 5 214
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
216 |
215
|
eqcomd |
|- ( ( ph /\ x e. A ) -> C = ( G ` x ) ) |
217 |
213 216
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( B / C ) = ( ( F ` x ) / ( G ` x ) ) ) |
218 |
212 217
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) / ( G ` x ) ) ) |
219 |
205 210 218
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) |
220 |
195 219
|
eqtrd |
|- ( ( ph /\ v e. A ) -> ( ( H ` v ) - 0 ) = ( ( F ` v ) / ( G ` v ) ) ) |
221 |
220
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( H ` v ) - 0 ) ) = ( abs ` ( ( F ` v ) / ( G ` v ) ) ) ) |
222 |
188 189 221
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) = ( abs ` ( ( F ` v ) / ( G ` v ) ) ) ) |
223 |
|
simp-6l |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ph /\ y e. RR+ ) ) |
224 |
223 189
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( ph /\ y e. RR+ ) /\ v e. A ) ) |
225 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
226 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
227 |
|
nfcv |
|- F/_ x 0 |
228 |
202 227
|
nfne |
|- F/ x ( G ` v ) =/= 0 |
229 |
162 228
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( G ` v ) =/= 0 ) |
230 |
207
|
neeq1d |
|- ( x = v -> ( ( G ` x ) =/= 0 <-> ( G ` v ) =/= 0 ) ) |
231 |
170 230
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( G ` x ) =/= 0 ) <-> ( ( ph /\ v e. A ) -> ( G ` v ) =/= 0 ) ) ) |
232 |
215 191
|
eqnetrd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) =/= 0 ) |
233 |
229 231 232
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( G ` v ) =/= 0 ) |
234 |
178 58 233
|
absdivd |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) = ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) ) |
235 |
234
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) = ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) ) |
236 |
235
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) = ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) ) |
237 |
178
|
abscld |
|- ( ( ph /\ v e. A ) -> ( abs ` ( F ` v ) ) e. RR ) |
238 |
58 233
|
absne0d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( G ` v ) ) =/= 0 ) |
239 |
237 79 238
|
redivcld |
|- ( ( ph /\ v e. A ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
240 |
239
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
241 |
240
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
242 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
243 |
242
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> y e. RR ) |
244 |
21
|
rpred |
|- ( ph -> ( ( abs ` D ) / 2 ) e. RR ) |
245 |
244
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( abs ` D ) / 2 ) e. RR ) |
246 |
243 245
|
remulcld |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR ) |
247 |
246
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR ) |
248 |
58 233
|
absrpcld |
|- ( ( ph /\ v e. A ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
249 |
248
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
250 |
249
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
251 |
247 250
|
rerpdivcld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
252 |
243
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> y e. RR ) |
253 |
|
simp-4l |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ph ) |
254 |
|
simpllr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> v e. A ) |
255 |
253 254 237
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( F ` v ) ) e. RR ) |
256 |
|
simpr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
257 |
255 247 250 256
|
ltdiv1dd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) < ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) ) |
258 |
243
|
recnd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> y e. CC ) |
259 |
48
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( abs ` D ) / 2 ) e. CC ) |
260 |
249
|
rpcnd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( G ` v ) ) e. CC ) |
261 |
238
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( G ` v ) ) =/= 0 ) |
262 |
258 259 260 261
|
divassd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) = ( y x. ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) ) ) |
263 |
262
|
adantr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) = ( y x. ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) ) ) |
264 |
245 249
|
rerpdivcld |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) e. RR ) |
265 |
264
|
adantr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) e. RR ) |
266 |
|
1red |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> 1 e. RR ) |
267 |
|
simpllr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> y e. RR+ ) |
268 |
244
|
ad2antrr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( abs ` D ) / 2 ) e. RR ) |
269 |
|
1rp |
|- 1 e. RR+ |
270 |
269
|
a1i |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> 1 e. RR+ ) |
271 |
248
|
adantr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
272 |
48
|
div1d |
|- ( ph -> ( ( ( abs ` D ) / 2 ) / 1 ) = ( ( abs ` D ) / 2 ) ) |
273 |
272
|
ad2antrr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / 1 ) = ( ( abs ` D ) / 2 ) ) |
274 |
|
simpr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
275 |
273 274
|
eqbrtrd |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / 1 ) < ( abs ` ( G ` v ) ) ) |
276 |
268 270 271 275
|
ltdiv23d |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) < 1 ) |
277 |
276
|
adantllr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) < 1 ) |
278 |
265 266 267 277
|
ltmul2dd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( y x. ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) ) < ( y x. 1 ) ) |
279 |
263 278
|
eqbrtrd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) < ( y x. 1 ) ) |
280 |
258
|
mulid1d |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( y x. 1 ) = y ) |
281 |
280
|
adantr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( y x. 1 ) = y ) |
282 |
279 281
|
breqtrd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) < y ) |
283 |
282
|
adantr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) < y ) |
284 |
241 251 252 257 283
|
lttrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) < y ) |
285 |
236 284
|
eqbrtrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) < y ) |
286 |
224 225 226 285
|
syl21anc |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) < y ) |
287 |
222 286
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) |
288 |
129 151 187 287
|
syl21anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) |
289 |
288
|
3exp |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) |
290 |
122 289
|
ralrimi |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
291 |
|
brimralrspcev |
|- ( ( if ( z <_ u , z , u ) e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
292 |
115 290 291
|
syl2anc |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
293 |
292
|
rexlimdv3a |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> ( E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) |
294 |
112 293
|
mpd |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
295 |
294
|
rexlimdv3a |
|- ( ( ph /\ y e. RR+ ) -> ( E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) |
296 |
90 295
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
297 |
296
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
298 |
193 12 15
|
ellimc3 |
|- ( ph -> ( 0 e. ( H limCC E ) <-> ( 0 e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) ) |
299 |
9 297 298
|
mpbir2and |
|- ( ph -> 0 e. ( H limCC E ) ) |