Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0elright.1 | |- ( ph -> A e. No ) |
|
0elright.2 | |- ( ph -> A |
||
Assertion | 0elright | |- ( ph -> 0s e. ( _Right ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elright.1 | |- ( ph -> A e. No ) |
|
2 | 0elright.2 | |- ( ph -> A |
|
3 | sltne | |- ( ( A e. No /\ A |
|
4 | 1 2 3 | syl2anc | |- ( ph -> 0s =/= A ) |
5 | 4 | necomd | |- ( ph -> A =/= 0s ) |
6 | 1 5 | 0elold | |- ( ph -> 0s e. ( _Old ` ( bday ` A ) ) ) |
7 | breq2 | |- ( x = 0s -> ( A |
|
8 | rightval | |- ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A |
|
9 | 7 8 | elrab2 | |- ( 0s e. ( _Right ` A ) <-> ( 0s e. ( _Old ` ( bday ` A ) ) /\ A |
10 | 6 2 9 | sylanbrc | |- ( ph -> 0s e. ( _Right ` A ) ) |