Metamath Proof Explorer


Theorem 0elright

Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses 0elright.1
|- ( ph -> A e. No )
0elright.2
|- ( ph -> A 
Assertion 0elright
|- ( ph -> 0s e. ( _Right ` A ) )

Proof

Step Hyp Ref Expression
1 0elright.1
 |-  ( ph -> A e. No )
2 0elright.2
 |-  ( ph -> A 
3 sltne
 |-  ( ( A e. No /\ A  0s =/= A )
4 1 2 3 syl2anc
 |-  ( ph -> 0s =/= A )
5 4 necomd
 |-  ( ph -> A =/= 0s )
6 1 5 0elold
 |-  ( ph -> 0s e. ( _Old ` ( bday ` A ) ) )
7 breq2
 |-  ( x = 0s -> ( A  A 
8 rightval
 |-  ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A 
9 7 8 elrab2
 |-  ( 0s e. ( _Right ` A ) <-> ( 0s e. ( _Old ` ( bday ` A ) ) /\ A 
10 6 2 9 sylanbrc
 |-  ( ph -> 0s e. ( _Right ` A ) )