| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 2 |
|
wwlksn |
|- ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| 3 |
1 2
|
syl |
|- ( N e. NN -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| 4 |
3
|
adantl |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| 5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 6 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 7 |
5 6
|
iswwlks |
|- ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 8 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 9 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
| 10 |
8 9
|
syl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
| 11 |
|
id |
|- ( N e. NN -> N e. NN ) |
| 12 |
10 11
|
eqeltrd |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) e. NN ) |
| 13 |
12
|
adantl |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( ( N + 1 ) - 1 ) e. NN ) |
| 14 |
13
|
adantl |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( N + 1 ) - 1 ) e. NN ) |
| 15 |
|
oveq1 |
|- ( ( # ` w ) = ( N + 1 ) -> ( ( # ` w ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 16 |
15
|
eleq1d |
|- ( ( # ` w ) = ( N + 1 ) -> ( ( ( # ` w ) - 1 ) e. NN <-> ( ( N + 1 ) - 1 ) e. NN ) ) |
| 17 |
16
|
adantr |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( ( # ` w ) - 1 ) e. NN <-> ( ( N + 1 ) - 1 ) e. NN ) ) |
| 18 |
14 17
|
mpbird |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( # ` w ) - 1 ) e. NN ) |
| 19 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( ( # ` w ) - 1 ) ) <-> ( ( # ` w ) - 1 ) e. NN ) |
| 20 |
18 19
|
sylibr |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> 0 e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ) |
| 21 |
|
fveq2 |
|- ( i = 0 -> ( w ` i ) = ( w ` 0 ) ) |
| 22 |
|
fv0p1e1 |
|- ( i = 0 -> ( w ` ( i + 1 ) ) = ( w ` 1 ) ) |
| 23 |
21 22
|
preq12d |
|- ( i = 0 -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( w ` 0 ) , ( w ` 1 ) } ) |
| 24 |
23
|
eleq1d |
|- ( i = 0 -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) /\ i = 0 ) -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 26 |
20 25
|
rspcdv |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 27 |
|
eleq2 |
|- ( ( Edg ` G ) = (/) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. (/) ) ) |
| 28 |
|
noel |
|- -. { ( w ` 0 ) , ( w ` 1 ) } e. (/) |
| 29 |
28
|
pm2.21i |
|- ( { ( w ` 0 ) , ( w ` 1 ) } e. (/) -> -. ( # ` w ) = ( N + 1 ) ) |
| 30 |
27 29
|
biimtrdi |
|- ( ( Edg ` G ) = (/) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 31 |
30
|
adantr |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 32 |
31
|
adantl |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 33 |
26 32
|
syldc |
|- ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 34 |
33
|
3ad2ant3 |
|- ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 35 |
34
|
com12 |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 36 |
7 35
|
biimtrid |
|- ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( w e. ( WWalks ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 37 |
36
|
expimpd |
|- ( ( # ` w ) = ( N + 1 ) -> ( ( ( ( Edg ` G ) = (/) /\ N e. NN ) /\ w e. ( WWalks ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 38 |
|
ax-1 |
|- ( -. ( # ` w ) = ( N + 1 ) -> ( ( ( ( Edg ` G ) = (/) /\ N e. NN ) /\ w e. ( WWalks ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) |
| 39 |
37 38
|
pm2.61i |
|- ( ( ( ( Edg ` G ) = (/) /\ N e. NN ) /\ w e. ( WWalks ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) |
| 40 |
39
|
ralrimiva |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> A. w e. ( WWalks ` G ) -. ( # ` w ) = ( N + 1 ) ) |
| 41 |
|
rabeq0 |
|- ( { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = (/) <-> A. w e. ( WWalks ` G ) -. ( # ` w ) = ( N + 1 ) ) |
| 42 |
40 41
|
sylibr |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = (/) ) |
| 43 |
4 42
|
eqtrd |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( N WWalksN G ) = (/) ) |