Metamath Proof Explorer


Theorem 0evenALTV

Description: 0 is an even number. (Contributed by AV, 11-Feb-2020) (Revised by AV, 17-Jun-2020)

Ref Expression
Assertion 0evenALTV
|- 0 e. Even

Proof

Step Hyp Ref Expression
1 0z
 |-  0 e. ZZ
2 2cn
 |-  2 e. CC
3 2ne0
 |-  2 =/= 0
4 2 3 div0i
 |-  ( 0 / 2 ) = 0
5 4 1 eqeltri
 |-  ( 0 / 2 ) e. ZZ
6 iseven
 |-  ( 0 e. Even <-> ( 0 e. ZZ /\ ( 0 / 2 ) e. ZZ ) )
7 1 5 6 mpbir2an
 |-  0 e. Even