| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0frgp.g |  |-  G = ( freeGrp ` (/) ) | 
						
							| 2 |  | 0frgp.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | 0ex |  |-  (/) e. _V | 
						
							| 4 | 1 | frgpgrp |  |-  ( (/) e. _V -> G e. Grp ) | 
						
							| 5 | 3 4 | ax-mp |  |-  G e. Grp | 
						
							| 6 |  | f0 |  |-  (/) : (/) --> B | 
						
							| 7 |  | eqid |  |-  ( ~FG ` (/) ) = ( ~FG ` (/) ) | 
						
							| 8 |  | eqid |  |-  ( varFGrp ` (/) ) = ( varFGrp ` (/) ) | 
						
							| 9 | 7 8 1 2 | vrgpf |  |-  ( (/) e. _V -> ( varFGrp ` (/) ) : (/) --> B ) | 
						
							| 10 |  | ffn |  |-  ( ( varFGrp ` (/) ) : (/) --> B -> ( varFGrp ` (/) ) Fn (/) ) | 
						
							| 11 | 3 9 10 | mp2b |  |-  ( varFGrp ` (/) ) Fn (/) | 
						
							| 12 |  | fn0 |  |-  ( ( varFGrp ` (/) ) Fn (/) <-> ( varFGrp ` (/) ) = (/) ) | 
						
							| 13 | 11 12 | mpbi |  |-  ( varFGrp ` (/) ) = (/) | 
						
							| 14 | 13 | eqcomi |  |-  (/) = ( varFGrp ` (/) ) | 
						
							| 15 | 1 2 14 | frgpup3 |  |-  ( ( G e. Grp /\ (/) e. _V /\ (/) : (/) --> B ) -> E! f e. ( G GrpHom G ) ( f o. (/) ) = (/) ) | 
						
							| 16 | 5 3 6 15 | mp3an |  |-  E! f e. ( G GrpHom G ) ( f o. (/) ) = (/) | 
						
							| 17 |  | reurmo |  |-  ( E! f e. ( G GrpHom G ) ( f o. (/) ) = (/) -> E* f e. ( G GrpHom G ) ( f o. (/) ) = (/) ) | 
						
							| 18 | 16 17 | ax-mp |  |-  E* f e. ( G GrpHom G ) ( f o. (/) ) = (/) | 
						
							| 19 | 2 | idghm |  |-  ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) | 
						
							| 20 | 5 19 | ax-mp |  |-  ( _I |` B ) e. ( G GrpHom G ) | 
						
							| 21 |  | tru |  |-  T. | 
						
							| 22 | 20 21 | pm3.2i |  |-  ( ( _I |` B ) e. ( G GrpHom G ) /\ T. ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 24 | 23 2 | 0ghm |  |-  ( ( G e. Grp /\ G e. Grp ) -> ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) ) | 
						
							| 25 | 5 5 24 | mp2an |  |-  ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) | 
						
							| 26 | 25 21 | pm3.2i |  |-  ( ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) /\ T. ) | 
						
							| 27 |  | co02 |  |-  ( f o. (/) ) = (/) | 
						
							| 28 | 27 | bitru |  |-  ( ( f o. (/) ) = (/) <-> T. ) | 
						
							| 29 | 28 | a1i |  |-  ( f = ( _I |` B ) -> ( ( f o. (/) ) = (/) <-> T. ) ) | 
						
							| 30 | 28 | a1i |  |-  ( f = ( B X. { ( 0g ` G ) } ) -> ( ( f o. (/) ) = (/) <-> T. ) ) | 
						
							| 31 | 29 30 | rmoi |  |-  ( ( E* f e. ( G GrpHom G ) ( f o. (/) ) = (/) /\ ( ( _I |` B ) e. ( G GrpHom G ) /\ T. ) /\ ( ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) /\ T. ) ) -> ( _I |` B ) = ( B X. { ( 0g ` G ) } ) ) | 
						
							| 32 | 18 22 26 31 | mp3an |  |-  ( _I |` B ) = ( B X. { ( 0g ` G ) } ) | 
						
							| 33 |  | mptresid |  |-  ( _I |` B ) = ( x e. B |-> x ) | 
						
							| 34 |  | fconstmpt |  |-  ( B X. { ( 0g ` G ) } ) = ( x e. B |-> ( 0g ` G ) ) | 
						
							| 35 | 32 33 34 | 3eqtr3i |  |-  ( x e. B |-> x ) = ( x e. B |-> ( 0g ` G ) ) | 
						
							| 36 |  | mpteqb |  |-  ( A. x e. B x e. B -> ( ( x e. B |-> x ) = ( x e. B |-> ( 0g ` G ) ) <-> A. x e. B x = ( 0g ` G ) ) ) | 
						
							| 37 |  | id |  |-  ( x e. B -> x e. B ) | 
						
							| 38 | 36 37 | mprg |  |-  ( ( x e. B |-> x ) = ( x e. B |-> ( 0g ` G ) ) <-> A. x e. B x = ( 0g ` G ) ) | 
						
							| 39 | 35 38 | mpbi |  |-  A. x e. B x = ( 0g ` G ) | 
						
							| 40 | 39 | rspec |  |-  ( x e. B -> x = ( 0g ` G ) ) | 
						
							| 41 |  | velsn |  |-  ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) | 
						
							| 42 | 40 41 | sylibr |  |-  ( x e. B -> x e. { ( 0g ` G ) } ) | 
						
							| 43 | 42 | ssriv |  |-  B C_ { ( 0g ` G ) } | 
						
							| 44 | 2 23 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. B ) | 
						
							| 45 | 5 44 | ax-mp |  |-  ( 0g ` G ) e. B | 
						
							| 46 |  | snssi |  |-  ( ( 0g ` G ) e. B -> { ( 0g ` G ) } C_ B ) | 
						
							| 47 | 45 46 | ax-mp |  |-  { ( 0g ` G ) } C_ B | 
						
							| 48 | 43 47 | eqssi |  |-  B = { ( 0g ` G ) } | 
						
							| 49 |  | fvex |  |-  ( 0g ` G ) e. _V | 
						
							| 50 | 49 | ensn1 |  |-  { ( 0g ` G ) } ~~ 1o | 
						
							| 51 | 48 50 | eqbrtri |  |-  B ~~ 1o |