Step |
Hyp |
Ref |
Expression |
1 |
|
0frgp.g |
|- G = ( freeGrp ` (/) ) |
2 |
|
0frgp.b |
|- B = ( Base ` G ) |
3 |
|
0ex |
|- (/) e. _V |
4 |
1
|
frgpgrp |
|- ( (/) e. _V -> G e. Grp ) |
5 |
3 4
|
ax-mp |
|- G e. Grp |
6 |
|
f0 |
|- (/) : (/) --> B |
7 |
|
eqid |
|- ( ~FG ` (/) ) = ( ~FG ` (/) ) |
8 |
|
eqid |
|- ( varFGrp ` (/) ) = ( varFGrp ` (/) ) |
9 |
7 8 1 2
|
vrgpf |
|- ( (/) e. _V -> ( varFGrp ` (/) ) : (/) --> B ) |
10 |
|
ffn |
|- ( ( varFGrp ` (/) ) : (/) --> B -> ( varFGrp ` (/) ) Fn (/) ) |
11 |
3 9 10
|
mp2b |
|- ( varFGrp ` (/) ) Fn (/) |
12 |
|
fn0 |
|- ( ( varFGrp ` (/) ) Fn (/) <-> ( varFGrp ` (/) ) = (/) ) |
13 |
11 12
|
mpbi |
|- ( varFGrp ` (/) ) = (/) |
14 |
13
|
eqcomi |
|- (/) = ( varFGrp ` (/) ) |
15 |
1 2 14
|
frgpup3 |
|- ( ( G e. Grp /\ (/) e. _V /\ (/) : (/) --> B ) -> E! f e. ( G GrpHom G ) ( f o. (/) ) = (/) ) |
16 |
5 3 6 15
|
mp3an |
|- E! f e. ( G GrpHom G ) ( f o. (/) ) = (/) |
17 |
|
reurmo |
|- ( E! f e. ( G GrpHom G ) ( f o. (/) ) = (/) -> E* f e. ( G GrpHom G ) ( f o. (/) ) = (/) ) |
18 |
16 17
|
ax-mp |
|- E* f e. ( G GrpHom G ) ( f o. (/) ) = (/) |
19 |
2
|
idghm |
|- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |
20 |
5 19
|
ax-mp |
|- ( _I |` B ) e. ( G GrpHom G ) |
21 |
|
tru |
|- T. |
22 |
20 21
|
pm3.2i |
|- ( ( _I |` B ) e. ( G GrpHom G ) /\ T. ) |
23 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
24 |
23 2
|
0ghm |
|- ( ( G e. Grp /\ G e. Grp ) -> ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) ) |
25 |
5 5 24
|
mp2an |
|- ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) |
26 |
25 21
|
pm3.2i |
|- ( ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) /\ T. ) |
27 |
|
co02 |
|- ( f o. (/) ) = (/) |
28 |
27
|
bitru |
|- ( ( f o. (/) ) = (/) <-> T. ) |
29 |
28
|
a1i |
|- ( f = ( _I |` B ) -> ( ( f o. (/) ) = (/) <-> T. ) ) |
30 |
28
|
a1i |
|- ( f = ( B X. { ( 0g ` G ) } ) -> ( ( f o. (/) ) = (/) <-> T. ) ) |
31 |
29 30
|
rmoi |
|- ( ( E* f e. ( G GrpHom G ) ( f o. (/) ) = (/) /\ ( ( _I |` B ) e. ( G GrpHom G ) /\ T. ) /\ ( ( B X. { ( 0g ` G ) } ) e. ( G GrpHom G ) /\ T. ) ) -> ( _I |` B ) = ( B X. { ( 0g ` G ) } ) ) |
32 |
18 22 26 31
|
mp3an |
|- ( _I |` B ) = ( B X. { ( 0g ` G ) } ) |
33 |
|
mptresid |
|- ( _I |` B ) = ( x e. B |-> x ) |
34 |
|
fconstmpt |
|- ( B X. { ( 0g ` G ) } ) = ( x e. B |-> ( 0g ` G ) ) |
35 |
32 33 34
|
3eqtr3i |
|- ( x e. B |-> x ) = ( x e. B |-> ( 0g ` G ) ) |
36 |
|
mpteqb |
|- ( A. x e. B x e. B -> ( ( x e. B |-> x ) = ( x e. B |-> ( 0g ` G ) ) <-> A. x e. B x = ( 0g ` G ) ) ) |
37 |
|
id |
|- ( x e. B -> x e. B ) |
38 |
36 37
|
mprg |
|- ( ( x e. B |-> x ) = ( x e. B |-> ( 0g ` G ) ) <-> A. x e. B x = ( 0g ` G ) ) |
39 |
35 38
|
mpbi |
|- A. x e. B x = ( 0g ` G ) |
40 |
39
|
rspec |
|- ( x e. B -> x = ( 0g ` G ) ) |
41 |
|
velsn |
|- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
42 |
40 41
|
sylibr |
|- ( x e. B -> x e. { ( 0g ` G ) } ) |
43 |
42
|
ssriv |
|- B C_ { ( 0g ` G ) } |
44 |
2 23
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
45 |
5 44
|
ax-mp |
|- ( 0g ` G ) e. B |
46 |
|
snssi |
|- ( ( 0g ` G ) e. B -> { ( 0g ` G ) } C_ B ) |
47 |
45 46
|
ax-mp |
|- { ( 0g ` G ) } C_ B |
48 |
43 47
|
eqssi |
|- B = { ( 0g ` G ) } |
49 |
|
fvex |
|- ( 0g ` G ) e. _V |
50 |
49
|
ensn1 |
|- { ( 0g ` G ) } ~~ 1o |
51 |
48 50
|
eqbrtri |
|- B ~~ 1o |