| Step | Hyp | Ref | Expression | 
						
							| 1 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 2 |  | eqid |  |-  ( +g ` (/) ) = ( +g ` (/) ) | 
						
							| 3 |  | eqid |  |-  ( 0g ` (/) ) = ( 0g ` (/) ) | 
						
							| 4 | 1 2 3 | grpidval |  |-  ( 0g ` (/) ) = ( iota e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) | 
						
							| 5 |  | noel |  |-  -. e e. (/) | 
						
							| 6 | 5 | intnanr |  |-  -. ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) | 
						
							| 7 | 6 | nex |  |-  -. E. e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) | 
						
							| 8 |  | euex |  |-  ( E! e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) -> E. e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) | 
						
							| 9 | 7 8 | mto |  |-  -. E! e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) | 
						
							| 10 |  | iotanul |  |-  ( -. E! e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) -> ( iota e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) = (/) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( iota e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) = (/) | 
						
							| 12 | 4 11 | eqtr2i |  |-  (/) = ( 0g ` (/) ) |