Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ghm.z | |- .0. = ( 0g ` N ) | |
| 0ghm.b | |- B = ( Base ` M ) | ||
| Assertion | 0ghm | |- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ghm.z | |- .0. = ( 0g ` N ) | |
| 2 | 0ghm.b | |- B = ( Base ` M ) | |
| 3 | grpmnd | |- ( M e. Grp -> M e. Mnd ) | |
| 4 | grpmnd | |- ( N e. Grp -> N e. Mnd ) | |
| 5 | 1 2 | 0mhm |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) | 
| 6 | 3 4 5 | syl2an |  |-  ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) | 
| 7 | ghmmhmb | |- ( ( M e. Grp /\ N e. Grp ) -> ( M GrpHom N ) = ( M MndHom N ) ) | |
| 8 | 6 7 | eleqtrrd |  |-  ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |