| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0ss | 
							 |-  (/) C_ ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							dm0 | 
							 |-  dom (/) = (/)  | 
						
						
							| 3 | 
							
								2
							 | 
							reseq2i | 
							 |-  ( ( iEdg ` G ) |` dom (/) ) = ( ( iEdg ` G ) |` (/) )  | 
						
						
							| 4 | 
							
								
							 | 
							res0 | 
							 |-  ( ( iEdg ` G ) |` (/) ) = (/)  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtr2i | 
							 |-  (/) = ( ( iEdg ` G ) |` dom (/) )  | 
						
						
							| 6 | 
							
								
							 | 
							0ss | 
							 |-  (/) C_ ~P (/)  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							3pm3.2i | 
							 |-  ( (/) C_ ( Vtx ` G ) /\ (/) = ( ( iEdg ` G ) |` dom (/) ) /\ (/) C_ ~P (/) )  | 
						
						
							| 8 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 9 | 
							
								
							 | 
							vtxval0 | 
							 |-  ( Vtx ` (/) ) = (/)  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcomi | 
							 |-  (/) = ( Vtx ` (/) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Vtx ` G ) = ( Vtx ` G )  | 
						
						
							| 12 | 
							
								
							 | 
							iedgval0 | 
							 |-  ( iEdg ` (/) ) = (/)  | 
						
						
							| 13 | 
							
								12
							 | 
							eqcomi | 
							 |-  (/) = ( iEdg ` (/) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( iEdg ` G ) = ( iEdg ` G )  | 
						
						
							| 15 | 
							
								
							 | 
							edgval | 
							 |-  ( Edg ` (/) ) = ran ( iEdg ` (/) )  | 
						
						
							| 16 | 
							
								12
							 | 
							rneqi | 
							 |-  ran ( iEdg ` (/) ) = ran (/)  | 
						
						
							| 17 | 
							
								
							 | 
							rn0 | 
							 |-  ran (/) = (/)  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							3eqtrri | 
							 |-  (/) = ( Edg ` (/) )  | 
						
						
							| 19 | 
							
								10 11 13 14 18
							 | 
							issubgr | 
							 |-  ( ( G e. W /\ (/) e. _V ) -> ( (/) SubGraph G <-> ( (/) C_ ( Vtx ` G ) /\ (/) = ( ( iEdg ` G ) |` dom (/) ) /\ (/) C_ ~P (/) ) ) )  | 
						
						
							| 20 | 
							
								8 19
							 | 
							mpan2 | 
							 |-  ( G e. W -> ( (/) SubGraph G <-> ( (/) C_ ( Vtx ` G ) /\ (/) = ( ( iEdg ` G ) |` dom (/) ) /\ (/) C_ ~P (/) ) ) )  | 
						
						
							| 21 | 
							
								7 20
							 | 
							mpbiri | 
							 |-  ( G e. W -> (/) SubGraph G )  |