Metamath Proof Explorer


Theorem 0hashbc

Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
Assertion 0hashbc
|- ( N e. NN -> ( (/) C N ) = (/) )

Proof

Step Hyp Ref Expression
1 ramval.c
 |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
2 0fin
 |-  (/) e. Fin
3 nnnn0
 |-  ( N e. NN -> N e. NN0 )
4 1 hashbc2
 |-  ( ( (/) e. Fin /\ N e. NN0 ) -> ( # ` ( (/) C N ) ) = ( ( # ` (/) ) _C N ) )
5 2 3 4 sylancr
 |-  ( N e. NN -> ( # ` ( (/) C N ) ) = ( ( # ` (/) ) _C N ) )
6 hash0
 |-  ( # ` (/) ) = 0
7 6 oveq1i
 |-  ( ( # ` (/) ) _C N ) = ( 0 _C N )
8 bc0k
 |-  ( N e. NN -> ( 0 _C N ) = 0 )
9 7 8 eqtrid
 |-  ( N e. NN -> ( ( # ` (/) ) _C N ) = 0 )
10 5 9 eqtrd
 |-  ( N e. NN -> ( # ` ( (/) C N ) ) = 0 )
11 ovex
 |-  ( (/) C N ) e. _V
12 hasheq0
 |-  ( ( (/) C N ) e. _V -> ( ( # ` ( (/) C N ) ) = 0 <-> ( (/) C N ) = (/) ) )
13 11 12 ax-mp
 |-  ( ( # ` ( (/) C N ) ) = 0 <-> ( (/) C N ) = (/) )
14 10 13 sylib
 |-  ( N e. NN -> ( (/) C N ) = (/) )