Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
|
0fin |
|- (/) e. Fin |
3 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
4 |
1
|
hashbc2 |
|- ( ( (/) e. Fin /\ N e. NN0 ) -> ( # ` ( (/) C N ) ) = ( ( # ` (/) ) _C N ) ) |
5 |
2 3 4
|
sylancr |
|- ( N e. NN -> ( # ` ( (/) C N ) ) = ( ( # ` (/) ) _C N ) ) |
6 |
|
hash0 |
|- ( # ` (/) ) = 0 |
7 |
6
|
oveq1i |
|- ( ( # ` (/) ) _C N ) = ( 0 _C N ) |
8 |
|
bc0k |
|- ( N e. NN -> ( 0 _C N ) = 0 ) |
9 |
7 8
|
eqtrid |
|- ( N e. NN -> ( ( # ` (/) ) _C N ) = 0 ) |
10 |
5 9
|
eqtrd |
|- ( N e. NN -> ( # ` ( (/) C N ) ) = 0 ) |
11 |
|
ovex |
|- ( (/) C N ) e. _V |
12 |
|
hasheq0 |
|- ( ( (/) C N ) e. _V -> ( ( # ` ( (/) C N ) ) = 0 <-> ( (/) C N ) = (/) ) ) |
13 |
11 12
|
ax-mp |
|- ( ( # ` ( (/) C N ) ) = 0 <-> ( (/) C N ) = (/) ) |
14 |
10 13
|
sylib |
|- ( N e. NN -> ( (/) C N ) = (/) ) |