Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | 0inp0 | |- ( A = (/) -> -. A = { (/) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 | |- (/) =/= { (/) } |
|
2 | neeq1 | |- ( A = (/) -> ( A =/= { (/) } <-> (/) =/= { (/) } ) ) |
|
3 | 1 2 | mpbiri | |- ( A = (/) -> A =/= { (/) } ) |
4 | 3 | neneqd | |- ( A = (/) -> -. A = { (/) } ) |