Metamath Proof Explorer


Theorem 0lepnf

Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 0lepnf
|- 0 <_ +oo

Proof

Step Hyp Ref Expression
1 0xr
 |-  0 e. RR*
2 pnfge
 |-  ( 0 e. RR* -> 0 <_ +oo )
3 1 2 ax-mp
 |-  0 <_ +oo