| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lmhm.z |  |-  .0. = ( 0g ` N ) | 
						
							| 2 |  | 0lmhm.b |  |-  B = ( Base ` M ) | 
						
							| 3 |  | 0lmhm.s |  |-  S = ( Scalar ` M ) | 
						
							| 4 |  | 0lmhm.t |  |-  T = ( Scalar ` N ) | 
						
							| 5 |  | eqid |  |-  ( .s ` M ) = ( .s ` M ) | 
						
							| 6 |  | eqid |  |-  ( .s ` N ) = ( .s ` N ) | 
						
							| 7 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 8 |  | simp1 |  |-  ( ( M e. LMod /\ N e. LMod /\ S = T ) -> M e. LMod ) | 
						
							| 9 |  | simp2 |  |-  ( ( M e. LMod /\ N e. LMod /\ S = T ) -> N e. LMod ) | 
						
							| 10 |  | simp3 |  |-  ( ( M e. LMod /\ N e. LMod /\ S = T ) -> S = T ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ( M e. LMod /\ N e. LMod /\ S = T ) -> T = S ) | 
						
							| 12 |  | lmodgrp |  |-  ( M e. LMod -> M e. Grp ) | 
						
							| 13 |  | lmodgrp |  |-  ( N e. LMod -> N e. Grp ) | 
						
							| 14 | 1 2 | 0ghm |  |-  ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) | 
						
							| 15 | 12 13 14 | syl2an |  |-  ( ( M e. LMod /\ N e. LMod ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) | 
						
							| 17 |  | simpl2 |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> N e. LMod ) | 
						
							| 18 |  | simprl |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> x e. ( Base ` S ) ) | 
						
							| 19 |  | simpl3 |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> S = T ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( Base ` S ) = ( Base ` T ) ) | 
						
							| 21 | 18 20 | eleqtrd |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> x e. ( Base ` T ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 23 | 4 6 22 1 | lmodvs0 |  |-  ( ( N e. LMod /\ x e. ( Base ` T ) ) -> ( x ( .s ` N ) .0. ) = .0. ) | 
						
							| 24 | 17 21 23 | syl2anc |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` N ) .0. ) = .0. ) | 
						
							| 25 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 26 | 25 | fvconst2 |  |-  ( y e. B -> ( ( B X. { .0. } ) ` y ) = .0. ) | 
						
							| 27 | 26 | oveq2d |  |-  ( y e. B -> ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) = ( x ( .s ` N ) .0. ) ) | 
						
							| 28 | 27 | ad2antll |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) = ( x ( .s ` N ) .0. ) ) | 
						
							| 29 |  | simpl1 |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> M e. LMod ) | 
						
							| 30 |  | simprr |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> y e. B ) | 
						
							| 31 | 2 3 5 7 | lmodvscl |  |-  ( ( M e. LMod /\ x e. ( Base ` S ) /\ y e. B ) -> ( x ( .s ` M ) y ) e. B ) | 
						
							| 32 | 29 18 30 31 | syl3anc |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` M ) y ) e. B ) | 
						
							| 33 | 25 | fvconst2 |  |-  ( ( x ( .s ` M ) y ) e. B -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = .0. ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = .0. ) | 
						
							| 35 | 24 28 34 | 3eqtr4rd |  |-  ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) ) | 
						
							| 36 | 2 5 6 3 4 7 8 9 11 16 35 | islmhmd |  |-  ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M LMHom N ) ) |