Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | 0lt1o | |- (/) e. 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- (/) = (/) |
|
2 | el1o | |- ( (/) e. 1o <-> (/) = (/) ) |
|
3 | 1 2 | mpbir | |- (/) e. 1o |