| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1pr |  |-  1P e. P. | 
						
							| 2 |  | addclpr |  |-  ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) | 
						
							| 3 | 1 1 2 | mp2an |  |-  ( 1P +P. 1P ) e. P. | 
						
							| 4 |  | ltaddpr |  |-  ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( 1P +P. 1P )  | 
						
							| 5 | 3 1 4 | mp2an |  |-  ( 1P +P. 1P )  | 
						
							| 6 |  | addcompr |  |-  ( 1P +P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) +P. 1P ) | 
						
							| 7 | 5 6 | breqtrri |  |-  ( 1P +P. 1P )  | 
						
							| 8 |  | ltsrpr |  |-  ( [ <. 1P , 1P >. ] ~R . ] ~R <-> ( 1P +P. 1P )  | 
						
							| 9 | 7 8 | mpbir |  |-  [ <. 1P , 1P >. ] ~R . ] ~R | 
						
							| 10 |  | df-0r |  |-  0R = [ <. 1P , 1P >. ] ~R | 
						
							| 11 |  | df-1r |  |-  1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R | 
						
							| 12 | 9 10 11 | 3brtr4i |  |-  0R  |