| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1pr |
|- 1P e. P. |
| 2 |
|
addclpr |
|- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
| 3 |
1 1 2
|
mp2an |
|- ( 1P +P. 1P ) e. P. |
| 4 |
|
ltaddpr |
|- ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) |
| 5 |
3 1 4
|
mp2an |
|- ( 1P +P. 1P ) |
| 6 |
|
addcompr |
|- ( 1P +P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) +P. 1P ) |
| 7 |
5 6
|
breqtrri |
|- ( 1P +P. 1P ) |
| 8 |
|
ltsrpr |
|- ( [ <. 1P , 1P >. ] ~R . ] ~R <-> ( 1P +P. 1P ) |
| 9 |
7 8
|
mpbir |
|- [ <. 1P , 1P >. ] ~R . ] ~R |
| 10 |
|
df-0r |
|- 0R = [ <. 1P , 1P >. ] ~R |
| 11 |
|
df-1r |
|- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
| 12 |
9 10 11
|
3brtr4i |
|- 0R |