| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ltat.z |  |-  .0. = ( 0. ` K ) | 
						
							| 2 |  | 0ltat.s |  |-  .< = ( lt ` K ) | 
						
							| 3 |  | 0ltat.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simpl |  |-  ( ( K e. OP /\ P e. A ) -> K e. OP ) | 
						
							| 5 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 6 | 5 1 | op0cl |  |-  ( K e. OP -> .0. e. ( Base ` K ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( K e. OP /\ P e. A ) -> .0. e. ( Base ` K ) ) | 
						
							| 8 | 5 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( K e. OP /\ P e. A ) -> P e. ( Base ` K ) ) | 
						
							| 10 |  | eqid |  |-  (  | 
						
							| 11 | 1 10 3 | atcvr0 |  |-  ( ( K e. OP /\ P e. A ) -> .0. (  | 
						
							| 12 | 5 2 10 | cvrlt |  |-  ( ( ( K e. OP /\ .0. e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ .0. (  .0. .< P ) | 
						
							| 13 | 4 7 9 11 12 | syl31anc |  |-  ( ( K e. OP /\ P e. A ) -> .0. .< P ) |