Metamath Proof Explorer


Theorem 0m0e0

Description: 0 minus 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 0m0e0
|- ( 0 - 0 ) = 0

Proof

Step Hyp Ref Expression
1 0cn
 |-  0 e. CC
2 1 subidi
 |-  ( 0 - 0 ) = 0