| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idmatidpmat.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 2 |  | idmatidpmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | 0mat2pmat.0 |  |-  .0. = ( 0g ` ( N Mat R ) ) | 
						
							| 4 |  | 0mat2pmat.z |  |-  Z = ( 0g ` ( N Mat P ) ) | 
						
							| 5 |  | eqid |  |-  ( N Mat R ) = ( N Mat R ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) | 
						
							| 7 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) | 
						
							| 9 | 1 5 6 2 7 8 | mat2pmatghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) ) | 
						
							| 10 | 9 | ancoms |  |-  ( ( R e. Ring /\ N e. Fin ) -> T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) ) | 
						
							| 11 | 3 4 | ghmid |  |-  ( T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) -> ( T ` .0. ) = Z ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( T ` .0. ) = Z ) |