Metamath Proof Explorer


Theorem 0mbl

Description: The empty set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion 0mbl
|- (/) e. dom vol

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ RR
2 ovol0
 |-  ( vol* ` (/) ) = 0
3 nulmbl
 |-  ( ( (/) C_ RR /\ ( vol* ` (/) ) = 0 ) -> (/) e. dom vol )
4 1 2 3 mp2an
 |-  (/) e. dom vol