| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0mhm.z |  |-  .0. = ( 0g ` N ) | 
						
							| 2 |  | 0mhm.b |  |-  B = ( Base ` M ) | 
						
							| 3 |  | id |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( M e. Mnd /\ N e. Mnd ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` N ) = ( Base ` N ) | 
						
							| 5 | 4 1 | mndidcl |  |-  ( N e. Mnd -> .0. e. ( Base ` N ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> .0. e. ( Base ` N ) ) | 
						
							| 7 |  | fconst6g |  |-  ( .0. e. ( Base ` N ) -> ( B X. { .0. } ) : B --> ( Base ` N ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) : B --> ( Base ` N ) ) | 
						
							| 9 |  | simpr |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> N e. Mnd ) | 
						
							| 10 |  | eqid |  |-  ( +g ` N ) = ( +g ` N ) | 
						
							| 11 | 4 10 1 | mndlid |  |-  ( ( N e. Mnd /\ .0. e. ( Base ` N ) ) -> ( .0. ( +g ` N ) .0. ) = .0. ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ( N e. Mnd /\ .0. e. ( Base ` N ) ) -> .0. = ( .0. ( +g ` N ) .0. ) ) | 
						
							| 13 | 9 5 12 | syl2anc2 |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> .0. = ( .0. ( +g ` N ) .0. ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> .0. = ( .0. ( +g ` N ) .0. ) ) | 
						
							| 15 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 16 | 2 15 | mndcl |  |-  ( ( M e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` M ) y ) e. B ) | 
						
							| 17 | 16 | 3expb |  |-  ( ( M e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) | 
						
							| 19 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 20 | 19 | fvconst2 |  |-  ( ( x ( +g ` M ) y ) e. B -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = .0. ) | 
						
							| 21 | 18 20 | syl |  |-  ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = .0. ) | 
						
							| 22 | 19 | fvconst2 |  |-  ( x e. B -> ( ( B X. { .0. } ) ` x ) = .0. ) | 
						
							| 23 | 19 | fvconst2 |  |-  ( y e. B -> ( ( B X. { .0. } ) ` y ) = .0. ) | 
						
							| 24 | 22 23 | oveqan12d |  |-  ( ( x e. B /\ y e. B ) -> ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) = ( .0. ( +g ` N ) .0. ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) = ( .0. ( +g ` N ) .0. ) ) | 
						
							| 26 | 14 21 25 | 3eqtr4d |  |-  ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) ) | 
						
							| 27 | 26 | ralrimivva |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 29 | 2 28 | mndidcl |  |-  ( M e. Mnd -> ( 0g ` M ) e. B ) | 
						
							| 30 | 29 | adantr |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( 0g ` M ) e. B ) | 
						
							| 31 | 19 | fvconst2 |  |-  ( ( 0g ` M ) e. B -> ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) | 
						
							| 33 | 8 27 32 | 3jca |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( ( B X. { .0. } ) : B --> ( Base ` N ) /\ A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) /\ ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) ) | 
						
							| 34 | 2 4 15 10 28 1 | ismhm |  |-  ( ( B X. { .0. } ) e. ( M MndHom N ) <-> ( ( M e. Mnd /\ N e. Mnd ) /\ ( ( B X. { .0. } ) : B --> ( Base ` N ) /\ A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) /\ ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) ) ) | 
						
							| 35 | 3 33 34 | sylanbrc |  |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) |