Description: Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | 0mod | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |- 0 e. RR |
|
2 | 1 | jctl | |- ( N e. RR+ -> ( 0 e. RR /\ N e. RR+ ) ) |
3 | rpgt0 | |- ( N e. RR+ -> 0 < N ) |
|
4 | 0le0 | |- 0 <_ 0 |
|
5 | 3 4 | jctil | |- ( N e. RR+ -> ( 0 <_ 0 /\ 0 < N ) ) |
6 | modid | |- ( ( ( 0 e. RR /\ N e. RR+ ) /\ ( 0 <_ 0 /\ 0 < N ) ) -> ( 0 mod N ) = 0 ) |
|
7 | 2 5 6 | syl2anc | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) |