Description: Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0mod | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0re | |- 0 e. RR | |
| 2 | 1 | jctl | |- ( N e. RR+ -> ( 0 e. RR /\ N e. RR+ ) ) | 
| 3 | rpgt0 | |- ( N e. RR+ -> 0 < N ) | |
| 4 | 0le0 | |- 0 <_ 0 | |
| 5 | 3 4 | jctil | |- ( N e. RR+ -> ( 0 <_ 0 /\ 0 < N ) ) | 
| 6 | modid | |- ( ( ( 0 e. RR /\ N e. RR+ ) /\ ( 0 <_ 0 /\ 0 < N ) ) -> ( 0 mod N ) = 0 ) | |
| 7 | 2 5 6 | syl2anc | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) |