Metamath Proof Explorer


Theorem 0ncn

Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996) (New usage is discouraged.)

Ref Expression
Assertion 0ncn
|- -. (/) e. CC

Proof

Step Hyp Ref Expression
1 0nelxp
 |-  -. (/) e. ( R. X. R. )
2 df-c
 |-  CC = ( R. X. R. )
3 2 eleq2i
 |-  ( (/) e. CC <-> (/) e. ( R. X. R. ) )
4 1 3 mtbir
 |-  -. (/) e. CC