Metamath Proof Explorer


Theorem 0nelelxp

Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion 0nelelxp
|- ( C e. ( A X. B ) -> -. (/) e. C )

Proof

Step Hyp Ref Expression
1 elxp
 |-  ( C e. ( A X. B ) <-> E. x E. y ( C = <. x , y >. /\ ( x e. A /\ y e. B ) ) )
2 0nelop
 |-  -. (/) e. <. x , y >.
3 eleq2
 |-  ( C = <. x , y >. -> ( (/) e. C <-> (/) e. <. x , y >. ) )
4 2 3 mtbiri
 |-  ( C = <. x , y >. -> -. (/) e. C )
5 4 adantr
 |-  ( ( C = <. x , y >. /\ ( x e. A /\ y e. B ) ) -> -. (/) e. C )
6 5 exlimivv
 |-  ( E. x E. y ( C = <. x , y >. /\ ( x e. A /\ y e. B ) ) -> -. (/) e. C )
7 1 6 sylbi
 |-  ( C e. ( A X. B ) -> -. (/) e. C )