Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nelelxp | |- ( C e. ( A X. B ) -> -. (/) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | |- ( C e. ( A X. B ) <-> E. x E. y ( C = <. x , y >. /\ ( x e. A /\ y e. B ) ) ) |
|
| 2 | 0nelop | |- -. (/) e. <. x , y >. |
|
| 3 | eleq2 | |- ( C = <. x , y >. -> ( (/) e. C <-> (/) e. <. x , y >. ) ) |
|
| 4 | 2 3 | mtbiri | |- ( C = <. x , y >. -> -. (/) e. C ) |
| 5 | 4 | adantr | |- ( ( C = <. x , y >. /\ ( x e. A /\ y e. B ) ) -> -. (/) e. C ) |
| 6 | 5 | exlimivv | |- ( E. x E. y ( C = <. x , y >. /\ ( x e. A /\ y e. B ) ) -> -. (/) e. C ) |
| 7 | 1 6 | sylbi | |- ( C e. ( A X. B ) -> -. (/) e. C ) |