Metamath Proof Explorer


Theorem 0nelopab

Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion 0nelopab
|- -. (/) e. { <. x , y >. | ph }

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 vex
 |-  y e. _V
3 1 2 opnzi
 |-  <. x , y >. =/= (/)
4 3 nesymi
 |-  -. (/) = <. x , y >.
5 4 intnanr
 |-  -. ( (/) = <. x , y >. /\ ph )
6 5 nex
 |-  -. E. y ( (/) = <. x , y >. /\ ph )
7 6 nex
 |-  -. E. x E. y ( (/) = <. x , y >. /\ ph )
8 elopab
 |-  ( (/) e. { <. x , y >. | ph } <-> E. x E. y ( (/) = <. x , y >. /\ ph ) )
9 7 8 mtbir
 |-  -. (/) e. { <. x , y >. | ph }