Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 0ngrp | |- -. (/) e. GrpOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr | |- -. (/) =/= (/) |
|
2 | rn0 | |- ran (/) = (/) |
|
3 | 2 | eqcomi | |- (/) = ran (/) |
4 | 3 | grpon0 | |- ( (/) e. GrpOp -> (/) =/= (/) ) |
5 | 1 4 | mto | |- -. (/) e. GrpOp |