Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ngrp | |- -. (/) e. GrpOp  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neirr | |- -. (/) =/= (/)  | 
						|
| 2 | rn0 | |- ran (/) = (/)  | 
						|
| 3 | 2 | eqcomi | |- (/) = ran (/)  | 
						
| 4 | 3 | grpon0 | |- ( (/) e. GrpOp -> (/) =/= (/) )  | 
						
| 5 | 1 4 | mto | |- -. (/) e. GrpOp  |