Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ngrp | |- -. (/) e. GrpOp | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neirr | |- -. (/) =/= (/) | |
| 2 | rn0 | |- ran (/) = (/) | |
| 3 | 2 | eqcomi | |- (/) = ran (/) | 
| 4 | 3 | grpon0 | |- ( (/) e. GrpOp -> (/) =/= (/) ) | 
| 5 | 1 4 | mto | |- -. (/) e. GrpOp |