Metamath Proof Explorer


Theorem 0ngrp

Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion 0ngrp
|- -. (/) e. GrpOp

Proof

Step Hyp Ref Expression
1 neirr
 |-  -. (/) =/= (/)
2 rn0
 |-  ran (/) = (/)
3 2 eqcomi
 |-  (/) = ran (/)
4 3 grpon0
 |-  ( (/) e. GrpOp -> (/) =/= (/) )
5 1 4 mto
 |-  -. (/) e. GrpOp