Step |
Hyp |
Ref |
Expression |
1 |
|
0nmhm.1 |
|- V = ( Base ` S ) |
2 |
|
0nmhm.2 |
|- .0. = ( 0g ` T ) |
3 |
|
0nmhm.f |
|- F = ( Scalar ` S ) |
4 |
|
0nmhm.g |
|- G = ( Scalar ` T ) |
5 |
|
nlmlmod |
|- ( S e. NrmMod -> S e. LMod ) |
6 |
|
nlmlmod |
|- ( T e. NrmMod -> T e. LMod ) |
7 |
|
id |
|- ( F = G -> F = G ) |
8 |
2 1 3 4
|
0lmhm |
|- ( ( S e. LMod /\ T e. LMod /\ F = G ) -> ( V X. { .0. } ) e. ( S LMHom T ) ) |
9 |
5 6 7 8
|
syl3an |
|- ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( V X. { .0. } ) e. ( S LMHom T ) ) |
10 |
|
nlmngp |
|- ( S e. NrmMod -> S e. NrmGrp ) |
11 |
|
nlmngp |
|- ( T e. NrmMod -> T e. NrmGrp ) |
12 |
1 2
|
0nghm |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) |
13 |
10 11 12
|
syl2an |
|- ( ( S e. NrmMod /\ T e. NrmMod ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) |
14 |
13
|
3adant3 |
|- ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) |
15 |
|
isnmhm |
|- ( ( V X. { .0. } ) e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( ( V X. { .0. } ) e. ( S LMHom T ) /\ ( V X. { .0. } ) e. ( S NGHom T ) ) ) ) |
16 |
15
|
baib |
|- ( ( S e. NrmMod /\ T e. NrmMod ) -> ( ( V X. { .0. } ) e. ( S NMHom T ) <-> ( ( V X. { .0. } ) e. ( S LMHom T ) /\ ( V X. { .0. } ) e. ( S NGHom T ) ) ) ) |
17 |
16
|
3adant3 |
|- ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( ( V X. { .0. } ) e. ( S NMHom T ) <-> ( ( V X. { .0. } ) e. ( S LMHom T ) /\ ( V X. { .0. } ) e. ( S NGHom T ) ) ) ) |
18 |
9 14 17
|
mpbir2and |
|- ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( V X. { .0. } ) e. ( S NMHom T ) ) |