Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | 0nnei | |- ( ( J e. Top /\ S =/= (/) ) -> -. (/) e. ( ( nei ` J ) ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnei | |- ( ( J e. Top /\ (/) e. ( ( nei ` J ) ` S ) ) -> S C_ (/) ) |
|
2 | ss0b | |- ( S C_ (/) <-> S = (/) ) |
|
3 | 1 2 | sylib | |- ( ( J e. Top /\ (/) e. ( ( nei ` J ) ` S ) ) -> S = (/) ) |
4 | 3 | ex | |- ( J e. Top -> ( (/) e. ( ( nei ` J ) ` S ) -> S = (/) ) ) |
5 | 4 | necon3ad | |- ( J e. Top -> ( S =/= (/) -> -. (/) e. ( ( nei ` J ) ` S ) ) ) |
6 | 5 | imp | |- ( ( J e. Top /\ S =/= (/) ) -> -. (/) e. ( ( nei ` J ) ` S ) ) |