Metamath Proof Explorer


Theorem 0nnn

Description: Zero is not a positive integer. (Contributed by NM, 25-Aug-1999) Remove dependency on ax-pre-mulgt0 . (Revised by Steven Nguyen, 30-Jan-2023)

Ref Expression
Assertion 0nnn
|- -. 0 e. NN

Proof

Step Hyp Ref Expression
1 neirr
 |-  -. 0 =/= 0
2 nnne0
 |-  ( 0 e. NN -> 0 =/= 0 )
3 1 2 mto
 |-  -. 0 e. NN