| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 |  |-  X = U. J | 
						
							| 2 |  | ssdif0 |  |-  ( X C_ S <-> ( X \ S ) = (/) ) | 
						
							| 3 |  | eqss |  |-  ( S = X <-> ( S C_ X /\ X C_ S ) ) | 
						
							| 4 |  | fveq2 |  |-  ( S = X -> ( ( int ` J ) ` S ) = ( ( int ` J ) ` X ) ) | 
						
							| 5 | 1 | ntrtop |  |-  ( J e. Top -> ( ( int ` J ) ` X ) = X ) | 
						
							| 6 | 4 5 | sylan9eqr |  |-  ( ( J e. Top /\ S = X ) -> ( ( int ` J ) ` S ) = X ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( J e. Top /\ S = X ) -> ( ( ( int ` J ) ` S ) = (/) <-> X = (/) ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( ( J e. Top /\ S = X ) -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) | 
						
							| 9 | 8 | ex |  |-  ( J e. Top -> ( S = X -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) | 
						
							| 10 | 3 9 | biimtrrid |  |-  ( J e. Top -> ( ( S C_ X /\ X C_ S ) -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) | 
						
							| 11 | 10 | expd |  |-  ( J e. Top -> ( S C_ X -> ( X C_ S -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) ) | 
						
							| 12 | 11 | com34 |  |-  ( J e. Top -> ( S C_ X -> ( ( ( int ` J ) ` S ) = (/) -> ( X C_ S -> X = (/) ) ) ) ) | 
						
							| 13 | 12 | imp32 |  |-  ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X C_ S -> X = (/) ) ) | 
						
							| 14 | 2 13 | biimtrrid |  |-  ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( ( X \ S ) = (/) -> X = (/) ) ) | 
						
							| 15 | 14 | necon3d |  |-  ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X =/= (/) -> ( X \ S ) =/= (/) ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) /\ X =/= (/) ) -> ( X \ S ) =/= (/) ) | 
						
							| 17 | 16 | an32s |  |-  ( ( ( J e. Top /\ X =/= (/) ) /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X \ S ) =/= (/) ) |