Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
|
ssdif0 |
|- ( X C_ S <-> ( X \ S ) = (/) ) |
3 |
|
eqss |
|- ( S = X <-> ( S C_ X /\ X C_ S ) ) |
4 |
|
fveq2 |
|- ( S = X -> ( ( int ` J ) ` S ) = ( ( int ` J ) ` X ) ) |
5 |
1
|
ntrtop |
|- ( J e. Top -> ( ( int ` J ) ` X ) = X ) |
6 |
4 5
|
sylan9eqr |
|- ( ( J e. Top /\ S = X ) -> ( ( int ` J ) ` S ) = X ) |
7 |
6
|
eqeq1d |
|- ( ( J e. Top /\ S = X ) -> ( ( ( int ` J ) ` S ) = (/) <-> X = (/) ) ) |
8 |
7
|
biimpd |
|- ( ( J e. Top /\ S = X ) -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) |
9 |
8
|
ex |
|- ( J e. Top -> ( S = X -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) |
10 |
3 9
|
syl5bir |
|- ( J e. Top -> ( ( S C_ X /\ X C_ S ) -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) |
11 |
10
|
expd |
|- ( J e. Top -> ( S C_ X -> ( X C_ S -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) ) |
12 |
11
|
com34 |
|- ( J e. Top -> ( S C_ X -> ( ( ( int ` J ) ` S ) = (/) -> ( X C_ S -> X = (/) ) ) ) ) |
13 |
12
|
imp32 |
|- ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X C_ S -> X = (/) ) ) |
14 |
2 13
|
syl5bir |
|- ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( ( X \ S ) = (/) -> X = (/) ) ) |
15 |
14
|
necon3d |
|- ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X =/= (/) -> ( X \ S ) =/= (/) ) ) |
16 |
15
|
imp |
|- ( ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) /\ X =/= (/) ) -> ( X \ S ) =/= (/) ) |
17 |
16
|
an32s |
|- ( ( ( J e. Top /\ X =/= (/) ) /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X \ S ) =/= (/) ) |