Step |
Hyp |
Ref |
Expression |
1 |
|
0oval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
0oval.6 |
|- Z = ( 0vec ` W ) |
3 |
|
0oval.0 |
|- O = ( U 0op W ) |
4 |
1 2 3
|
0ofval |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> O = ( X X. { Z } ) ) |
5 |
4
|
fveq1d |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( O ` A ) = ( ( X X. { Z } ) ` A ) ) |
6 |
5
|
3adant3 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( O ` A ) = ( ( X X. { Z } ) ` A ) ) |
7 |
2
|
fvexi |
|- Z e. _V |
8 |
7
|
fvconst2 |
|- ( A e. X -> ( ( X X. { Z } ) ` A ) = Z ) |
9 |
8
|
3ad2ant3 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( ( X X. { Z } ) ` A ) = Z ) |
10 |
6 9
|
eqtrd |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ A e. X ) -> ( O ` A ) = Z ) |