Metamath Proof Explorer


Theorem 0p1e1

Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016)

Ref Expression
Assertion 0p1e1
|- ( 0 + 1 ) = 1

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 1 addid2i
 |-  ( 0 + 1 ) = 1