Step |
Hyp |
Ref |
Expression |
1 |
|
0psub.s |
|- S = ( PSubSp ` K ) |
2 |
|
0ss |
|- (/) C_ ( Atoms ` K ) |
3 |
|
ral0 |
|- A. p e. (/) A. q e. (/) A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. (/) ) |
4 |
2 3
|
pm3.2i |
|- ( (/) C_ ( Atoms ` K ) /\ A. p e. (/) A. q e. (/) A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. (/) ) ) |
5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
8 |
5 6 7 1
|
ispsubsp |
|- ( K e. V -> ( (/) e. S <-> ( (/) C_ ( Atoms ` K ) /\ A. p e. (/) A. q e. (/) A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. (/) ) ) ) ) |
9 |
4 8
|
mpbiri |
|- ( K e. V -> (/) e. S ) |