Step |
Hyp |
Ref |
Expression |
1 |
|
0pthon.v |
|- V = ( Vtx ` G ) |
2 |
|
eqidd |
|- ( N e. V -> { <. 0 , N >. } = { <. 0 , N >. } ) |
3 |
|
1fv |
|- ( ( N e. V /\ { <. 0 , N >. } = { <. 0 , N >. } ) -> ( { <. 0 , N >. } : ( 0 ... 0 ) --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) |
4 |
2 3
|
mpdan |
|- ( N e. V -> ( { <. 0 , N >. } : ( 0 ... 0 ) --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) |
5 |
1
|
0pthon |
|- ( ( { <. 0 , N >. } : ( 0 ... 0 ) --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) -> (/) ( N ( PathsOn ` G ) N ) { <. 0 , N >. } ) |
6 |
4 5
|
syl |
|- ( N e. V -> (/) ( N ( PathsOn ` G ) N ) { <. 0 , N >. } ) |