Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
|- ( F : R --> NN0 -> ran F C_ NN0 ) |
2 |
1
|
3ad2ant3 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ NN0 ) |
3 |
|
nn0ssz |
|- NN0 C_ ZZ |
4 |
2 3
|
sstrdi |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ ZZ ) |
5 |
|
nn0ssre |
|- NN0 C_ RR |
6 |
2 5
|
sstrdi |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ RR ) |
7 |
|
simp1 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> R e. Fin ) |
8 |
|
ffn |
|- ( F : R --> NN0 -> F Fn R ) |
9 |
8
|
3ad2ant3 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> F Fn R ) |
10 |
|
dffn4 |
|- ( F Fn R <-> F : R -onto-> ran F ) |
11 |
9 10
|
sylib |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> F : R -onto-> ran F ) |
12 |
|
fofi |
|- ( ( R e. Fin /\ F : R -onto-> ran F ) -> ran F e. Fin ) |
13 |
7 11 12
|
syl2anc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F e. Fin ) |
14 |
|
fdm |
|- ( F : R --> NN0 -> dom F = R ) |
15 |
14
|
3ad2ant3 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> dom F = R ) |
16 |
|
simp2 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> R =/= (/) ) |
17 |
15 16
|
eqnetrd |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> dom F =/= (/) ) |
18 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
19 |
18
|
necon3bii |
|- ( dom F =/= (/) <-> ran F =/= (/) ) |
20 |
17 19
|
sylib |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F =/= (/) ) |
21 |
|
fimaxre |
|- ( ( ran F C_ RR /\ ran F e. Fin /\ ran F =/= (/) ) -> E. x e. ran F A. y e. ran F y <_ x ) |
22 |
6 13 20 21
|
syl3anc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> E. x e. ran F A. y e. ran F y <_ x ) |
23 |
|
ssrexv |
|- ( ran F C_ ZZ -> ( E. x e. ran F A. y e. ran F y <_ x -> E. x e. ZZ A. y e. ran F y <_ x ) ) |
24 |
4 22 23
|
sylc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> E. x e. ZZ A. y e. ran F y <_ x ) |
25 |
|
0ram |
|- ( ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) /\ E. x e. ZZ A. y e. ran F y <_ x ) -> ( 0 Ramsey F ) = sup ( ran F , RR , < ) ) |
26 |
24 25
|
mpdan |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ( 0 Ramsey F ) = sup ( ran F , RR , < ) ) |