Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|- ( F : R --> NN0 -> F Fn R ) |
2 |
|
dffn4 |
|- ( F Fn R <-> F : R -onto-> ran F ) |
3 |
1 2
|
sylib |
|- ( F : R --> NN0 -> F : R -onto-> ran F ) |
4 |
3
|
ad2antlr |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R = (/) ) -> F : R -onto-> ran F ) |
5 |
|
foeq2 |
|- ( R = (/) -> ( F : R -onto-> ran F <-> F : (/) -onto-> ran F ) ) |
6 |
5
|
adantl |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R = (/) ) -> ( F : R -onto-> ran F <-> F : (/) -onto-> ran F ) ) |
7 |
4 6
|
mpbid |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R = (/) ) -> F : (/) -onto-> ran F ) |
8 |
|
fo00 |
|- ( F : (/) -onto-> ran F <-> ( F = (/) /\ ran F = (/) ) ) |
9 |
8
|
simplbi |
|- ( F : (/) -onto-> ran F -> F = (/) ) |
10 |
7 9
|
syl |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R = (/) ) -> F = (/) ) |
11 |
10
|
oveq2d |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R = (/) ) -> ( 0 Ramsey F ) = ( 0 Ramsey (/) ) ) |
12 |
|
0nn0 |
|- 0 e. NN0 |
13 |
|
ram0 |
|- ( 0 e. NN0 -> ( 0 Ramsey (/) ) = 0 ) |
14 |
12 13
|
ax-mp |
|- ( 0 Ramsey (/) ) = 0 |
15 |
14 12
|
eqeltri |
|- ( 0 Ramsey (/) ) e. NN0 |
16 |
11 15
|
eqeltrdi |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R = (/) ) -> ( 0 Ramsey F ) e. NN0 ) |
17 |
|
0ram2 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ( 0 Ramsey F ) = sup ( ran F , RR , < ) ) |
18 |
|
frn |
|- ( F : R --> NN0 -> ran F C_ NN0 ) |
19 |
18
|
3ad2ant3 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ NN0 ) |
20 |
|
nn0ssz |
|- NN0 C_ ZZ |
21 |
19 20
|
sstrdi |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ ZZ ) |
22 |
|
fdm |
|- ( F : R --> NN0 -> dom F = R ) |
23 |
22
|
3ad2ant3 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> dom F = R ) |
24 |
|
simp2 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> R =/= (/) ) |
25 |
23 24
|
eqnetrd |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> dom F =/= (/) ) |
26 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
27 |
26
|
necon3bii |
|- ( dom F =/= (/) <-> ran F =/= (/) ) |
28 |
25 27
|
sylib |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F =/= (/) ) |
29 |
|
nn0ssre |
|- NN0 C_ RR |
30 |
19 29
|
sstrdi |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ RR ) |
31 |
|
simp1 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> R e. Fin ) |
32 |
3
|
3ad2ant3 |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> F : R -onto-> ran F ) |
33 |
|
fofi |
|- ( ( R e. Fin /\ F : R -onto-> ran F ) -> ran F e. Fin ) |
34 |
31 32 33
|
syl2anc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F e. Fin ) |
35 |
|
fimaxre |
|- ( ( ran F C_ RR /\ ran F e. Fin /\ ran F =/= (/) ) -> E. x e. ran F A. y e. ran F y <_ x ) |
36 |
30 34 28 35
|
syl3anc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> E. x e. ran F A. y e. ran F y <_ x ) |
37 |
|
ssrexv |
|- ( ran F C_ ZZ -> ( E. x e. ran F A. y e. ran F y <_ x -> E. x e. ZZ A. y e. ran F y <_ x ) ) |
38 |
21 36 37
|
sylc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> E. x e. ZZ A. y e. ran F y <_ x ) |
39 |
|
suprzcl2 |
|- ( ( ran F C_ ZZ /\ ran F =/= (/) /\ E. x e. ZZ A. y e. ran F y <_ x ) -> sup ( ran F , RR , < ) e. ran F ) |
40 |
21 28 38 39
|
syl3anc |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> sup ( ran F , RR , < ) e. ran F ) |
41 |
19 40
|
sseldd |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> sup ( ran F , RR , < ) e. NN0 ) |
42 |
17 41
|
eqeltrd |
|- ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ( 0 Ramsey F ) e. NN0 ) |
43 |
42
|
3expa |
|- ( ( ( R e. Fin /\ R =/= (/) ) /\ F : R --> NN0 ) -> ( 0 Ramsey F ) e. NN0 ) |
44 |
43
|
an32s |
|- ( ( ( R e. Fin /\ F : R --> NN0 ) /\ R =/= (/) ) -> ( 0 Ramsey F ) e. NN0 ) |
45 |
16 44
|
pm2.61dane |
|- ( ( R e. Fin /\ F : R --> NN0 ) -> ( 0 Ramsey F ) e. NN0 ) |