Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
cnre |
|- ( 1 e. CC -> E. x e. RR E. y e. RR 1 = ( x + ( _i x. y ) ) ) |
3 |
|
ax-rnegex |
|- ( x e. RR -> E. z e. RR ( x + z ) = 0 ) |
4 |
|
readdcl |
|- ( ( x e. RR /\ z e. RR ) -> ( x + z ) e. RR ) |
5 |
|
eleq1 |
|- ( ( x + z ) = 0 -> ( ( x + z ) e. RR <-> 0 e. RR ) ) |
6 |
4 5
|
syl5ibcom |
|- ( ( x e. RR /\ z e. RR ) -> ( ( x + z ) = 0 -> 0 e. RR ) ) |
7 |
6
|
rexlimdva |
|- ( x e. RR -> ( E. z e. RR ( x + z ) = 0 -> 0 e. RR ) ) |
8 |
3 7
|
mpd |
|- ( x e. RR -> 0 e. RR ) |
9 |
8
|
adantr |
|- ( ( x e. RR /\ E. y e. RR 1 = ( x + ( _i x. y ) ) ) -> 0 e. RR ) |
10 |
9
|
rexlimiva |
|- ( E. x e. RR E. y e. RR 1 = ( x + ( _i x. y ) ) -> 0 e. RR ) |
11 |
1 2 10
|
mp2b |
|- 0 e. RR |