| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
restval |
|- ( ( (/) e. _V /\ A e. _V ) -> ( (/) |`t A ) = ran ( x e. (/) |-> ( x i^i A ) ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. _V -> ( (/) |`t A ) = ran ( x e. (/) |-> ( x i^i A ) ) ) |
| 4 |
|
mpt0 |
|- ( x e. (/) |-> ( x i^i A ) ) = (/) |
| 5 |
4
|
rneqi |
|- ran ( x e. (/) |-> ( x i^i A ) ) = ran (/) |
| 6 |
|
rn0 |
|- ran (/) = (/) |
| 7 |
5 6
|
eqtri |
|- ran ( x e. (/) |-> ( x i^i A ) ) = (/) |
| 8 |
3 7
|
eqtrdi |
|- ( A e. _V -> ( (/) |`t A ) = (/) ) |
| 9 |
|
relxp |
|- Rel ( _V X. _V ) |
| 10 |
|
restfn |
|- |`t Fn ( _V X. _V ) |
| 11 |
10
|
fndmi |
|- dom |`t = ( _V X. _V ) |
| 12 |
11
|
releqi |
|- ( Rel dom |`t <-> Rel ( _V X. _V ) ) |
| 13 |
9 12
|
mpbir |
|- Rel dom |`t |
| 14 |
13
|
ovprc2 |
|- ( -. A e. _V -> ( (/) |`t A ) = (/) ) |
| 15 |
8 14
|
pm2.61i |
|- ( (/) |`t A ) = (/) |