| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 0ring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 0ring01eq.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 | 1 2 | 0ring |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) | 
						
							| 5 | 1 3 | ringidcl |  |-  ( R e. Ring -> .1. e. B ) | 
						
							| 6 |  | eleq2 |  |-  ( B = { .0. } -> ( .1. e. B <-> .1. e. { .0. } ) ) | 
						
							| 7 |  | elsni |  |-  ( .1. e. { .0. } -> .1. = .0. ) | 
						
							| 8 | 7 | eqcomd |  |-  ( .1. e. { .0. } -> .0. = .1. ) | 
						
							| 9 | 6 8 | biimtrdi |  |-  ( B = { .0. } -> ( .1. e. B -> .0. = .1. ) ) | 
						
							| 10 | 5 9 | syl5com |  |-  ( R e. Ring -> ( B = { .0. } -> .0. = .1. ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( B = { .0. } -> .0. = .1. ) ) | 
						
							| 12 | 4 11 | mpd |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |