Step |
Hyp |
Ref |
Expression |
1 |
|
0ring.b |
|- B = ( Base ` R ) |
2 |
|
0ring.0 |
|- .0. = ( 0g ` R ) |
3 |
|
0ring01eq.1 |
|- .1. = ( 1r ` R ) |
4 |
1
|
fvexi |
|- B e. _V |
5 |
|
hashen1 |
|- ( B e. _V -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) |
6 |
4 5
|
mp1i |
|- ( R e. Ring -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) |
7 |
1 2 3
|
0ring01eq |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |
8 |
7
|
eqcomd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .1. = .0. ) |
9 |
8
|
ex |
|- ( R e. Ring -> ( ( # ` B ) = 1 -> .1. = .0. ) ) |
10 |
|
eqcom |
|- ( .1. = .0. <-> .0. = .1. ) |
11 |
1 2 3
|
01eq0ring |
|- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |
12 |
|
fveq2 |
|- ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) |
13 |
2
|
fvexi |
|- .0. e. _V |
14 |
|
hashsng |
|- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
15 |
13 14
|
mp1i |
|- ( B = { .0. } -> ( # ` { .0. } ) = 1 ) |
16 |
12 15
|
eqtrd |
|- ( B = { .0. } -> ( # ` B ) = 1 ) |
17 |
11 16
|
syl |
|- ( ( R e. Ring /\ .0. = .1. ) -> ( # ` B ) = 1 ) |
18 |
17
|
ex |
|- ( R e. Ring -> ( .0. = .1. -> ( # ` B ) = 1 ) ) |
19 |
10 18
|
syl5bi |
|- ( R e. Ring -> ( .1. = .0. -> ( # ` B ) = 1 ) ) |
20 |
9 19
|
impbid |
|- ( R e. Ring -> ( ( # ` B ) = 1 <-> .1. = .0. ) ) |
21 |
6 20
|
bitr3d |
|- ( R e. Ring -> ( B ~~ 1o <-> .1. = .0. ) ) |