| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 0ring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 0ring01eq.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 | 1 | fvexi |  |-  B e. _V | 
						
							| 5 |  | hashen1 |  |-  ( B e. _V -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) | 
						
							| 6 | 4 5 | mp1i |  |-  ( R e. Ring -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) | 
						
							| 7 | 1 2 3 | 0ring01eq |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .1. = .0. ) | 
						
							| 9 | 8 | ex |  |-  ( R e. Ring -> ( ( # ` B ) = 1 -> .1. = .0. ) ) | 
						
							| 10 |  | eqcom |  |-  ( .1. = .0. <-> .0. = .1. ) | 
						
							| 11 | 1 2 3 | 01eq0ring |  |-  ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) | 
						
							| 12 |  | fveq2 |  |-  ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) | 
						
							| 13 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 14 |  | hashsng |  |-  ( .0. e. _V -> ( # ` { .0. } ) = 1 ) | 
						
							| 15 | 13 14 | mp1i |  |-  ( B = { .0. } -> ( # ` { .0. } ) = 1 ) | 
						
							| 16 | 12 15 | eqtrd |  |-  ( B = { .0. } -> ( # ` B ) = 1 ) | 
						
							| 17 | 11 16 | syl |  |-  ( ( R e. Ring /\ .0. = .1. ) -> ( # ` B ) = 1 ) | 
						
							| 18 | 17 | ex |  |-  ( R e. Ring -> ( .0. = .1. -> ( # ` B ) = 1 ) ) | 
						
							| 19 | 10 18 | biimtrid |  |-  ( R e. Ring -> ( .1. = .0. -> ( # ` B ) = 1 ) ) | 
						
							| 20 | 9 19 | impbid |  |-  ( R e. Ring -> ( ( # ` B ) = 1 <-> .1. = .0. ) ) | 
						
							| 21 | 6 20 | bitr3d |  |-  ( R e. Ring -> ( B ~~ 1o <-> .1. = .0. ) ) |