| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 0ring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 0ring01eq.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | eldif |  |-  ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ -. R e. NzRing ) ) | 
						
							| 5 |  | 0ringnnzr |  |-  ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 | 6 2 3 | 0ring01eq |  |-  ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> .0. = .1. ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> .1. = .0. ) | 
						
							| 9 | 8 | ex |  |-  ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 -> .1. = .0. ) ) | 
						
							| 10 | 5 9 | sylbird |  |-  ( R e. Ring -> ( -. R e. NzRing -> .1. = .0. ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( R e. Ring /\ -. R e. NzRing ) -> .1. = .0. ) | 
						
							| 12 | 4 11 | sylbi |  |-  ( R e. ( Ring \ NzRing ) -> .1. = .0. ) |