| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 0ring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | eldif |  |-  ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ -. R e. NzRing ) ) | 
						
							| 4 | 1 | a1i |  |-  ( R e. Ring -> B = ( Base ` R ) ) | 
						
							| 5 | 4 | fveqeq2d |  |-  ( R e. Ring -> ( ( # ` B ) = 1 <-> ( # ` ( Base ` R ) ) = 1 ) ) | 
						
							| 6 | 1 2 | 0ring |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) | 
						
							| 7 | 6 | ex |  |-  ( R e. Ring -> ( ( # ` B ) = 1 -> B = { .0. } ) ) | 
						
							| 8 |  | fveq2 |  |-  ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) | 
						
							| 9 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 10 |  | hashsng |  |-  ( .0. e. _V -> ( # ` { .0. } ) = 1 ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( # ` { .0. } ) = 1 | 
						
							| 12 | 8 11 | eqtrdi |  |-  ( B = { .0. } -> ( # ` B ) = 1 ) | 
						
							| 13 | 7 12 | impbid1 |  |-  ( R e. Ring -> ( ( # ` B ) = 1 <-> B = { .0. } ) ) | 
						
							| 14 |  | 0ringnnzr |  |-  ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) | 
						
							| 15 | 5 13 14 | 3bitr3rd |  |-  ( R e. Ring -> ( -. R e. NzRing <-> B = { .0. } ) ) | 
						
							| 16 | 15 | pm5.32i |  |-  ( ( R e. Ring /\ -. R e. NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) | 
						
							| 17 | 3 16 | bitri |  |-  ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) |