Step |
Hyp |
Ref |
Expression |
1 |
|
0ringufd.1 |
|- B = ( Base ` R ) |
2 |
|
0ringufd.2 |
|- ( ph -> R e. Ring ) |
3 |
|
0ringufd.3 |
|- ( ph -> ( # ` B ) = 1 ) |
4 |
1 2 3
|
0ringcring |
|- ( ph -> R e. CRing ) |
5 |
|
eqid |
|- ( AbsVal ` R ) = ( AbsVal ` R ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
|
eqid |
|- ( x e. B |-> if ( x = ( 0g ` R ) , 0 , 1 ) ) = ( x e. B |-> if ( x = ( 0g ` R ) , 0 , 1 ) ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
|
simprl |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) ) -> a e. B ) |
10 |
1
|
fveq2i |
|- ( # ` B ) = ( # ` ( Base ` R ) ) |
11 |
10 3
|
eqtr3id |
|- ( ph -> ( # ` ( Base ` R ) ) = 1 ) |
12 |
|
0ringnnzr |
|- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
13 |
12
|
biimpa |
|- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> -. R e. NzRing ) |
14 |
2 11 13
|
syl2anc |
|- ( ph -> -. R e. NzRing ) |
15 |
2 14
|
eldifd |
|- ( ph -> R e. ( Ring \ NzRing ) ) |
16 |
1 6
|
0ringbas |
|- ( R e. ( Ring \ NzRing ) -> B = { ( 0g ` R ) } ) |
17 |
15 16
|
syl |
|- ( ph -> B = { ( 0g ` R ) } ) |
18 |
17
|
adantr |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) ) -> B = { ( 0g ` R ) } ) |
19 |
9 18
|
eleqtrd |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) ) -> a e. { ( 0g ` R ) } ) |
20 |
|
elsni |
|- ( a e. { ( 0g ` R ) } -> a = ( 0g ` R ) ) |
21 |
19 20
|
syl |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) ) -> a = ( 0g ` R ) ) |
22 |
|
simprr |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) ) -> a =/= ( 0g ` R ) ) |
23 |
21 22
|
pm2.21ddne |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) ) -> ( a ( .r ` R ) b ) =/= ( 0g ` R ) ) |
24 |
23
|
3adant3 |
|- ( ( ph /\ ( a e. B /\ a =/= ( 0g ` R ) ) /\ ( b e. B /\ b =/= ( 0g ` R ) ) ) -> ( a ( .r ` R ) b ) =/= ( 0g ` R ) ) |
25 |
5 1 6 7 8 2 24
|
abvtrivd |
|- ( ph -> ( x e. B |-> if ( x = ( 0g ` R ) , 0 , 1 ) ) e. ( AbsVal ` R ) ) |
26 |
25
|
ne0d |
|- ( ph -> ( AbsVal ` R ) =/= (/) ) |
27 |
|
ral0 |
|- A. i e. (/) ( i i^i ( RPrime ` R ) ) =/= (/) |
28 |
|
prmidlssidl |
|- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) |
29 |
2 28
|
syl |
|- ( ph -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) |
30 |
1 6
|
0ringidl |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
31 |
2 3 30
|
syl2anc |
|- ( ph -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
32 |
29 31
|
sseqtrd |
|- ( ph -> ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } ) |
33 |
|
ssdif0 |
|- ( ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } <-> ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) = (/) ) |
34 |
32 33
|
sylib |
|- ( ph -> ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) = (/) ) |
35 |
34
|
raleqdv |
|- ( ph -> ( A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) <-> A. i e. (/) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) |
36 |
27 35
|
mpbiri |
|- ( ph -> A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) |
37 |
26 36
|
jca |
|- ( ph -> ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) |
38 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
39 |
|
eqid |
|- ( RPrime ` R ) = ( RPrime ` R ) |
40 |
5 38 39 6
|
isufd |
|- ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) |
41 |
4 37 40
|
sylanbrc |
|- ( ph -> R e. UFD ) |