| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
|- 0 e. CC |
| 2 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 3 |
|
risefallfac |
|- ( ( 0 e. CC /\ N e. NN0 ) -> ( 0 RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) ) |
| 4 |
1 2 3
|
sylancr |
|- ( N e. NN -> ( 0 RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) ) |
| 5 |
|
neg0 |
|- -u 0 = 0 |
| 6 |
5
|
oveq1i |
|- ( -u 0 FallFac N ) = ( 0 FallFac N ) |
| 7 |
|
0fallfac |
|- ( N e. NN -> ( 0 FallFac N ) = 0 ) |
| 8 |
6 7
|
eqtrid |
|- ( N e. NN -> ( -u 0 FallFac N ) = 0 ) |
| 9 |
8
|
oveq2d |
|- ( N e. NN -> ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) = ( ( -u 1 ^ N ) x. 0 ) ) |
| 10 |
|
neg1cn |
|- -u 1 e. CC |
| 11 |
|
expcl |
|- ( ( -u 1 e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
| 12 |
10 2 11
|
sylancr |
|- ( N e. NN -> ( -u 1 ^ N ) e. CC ) |
| 13 |
12
|
mul01d |
|- ( N e. NN -> ( ( -u 1 ^ N ) x. 0 ) = 0 ) |
| 14 |
4 9 13
|
3eqtrd |
|- ( N e. NN -> ( 0 RiseFac N ) = 0 ) |