Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
|- Rel ~< |
2 |
1
|
brrelex2i |
|- ( (/) ~< A -> A e. _V ) |
3 |
|
reldom |
|- Rel ~<_ |
4 |
3
|
brrelex2i |
|- ( 1o ~<_ A -> A e. _V ) |
5 |
|
0sdomg |
|- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
6 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
7 |
|
snssi |
|- ( x e. A -> { x } C_ A ) |
8 |
|
df1o2 |
|- 1o = { (/) } |
9 |
|
0ex |
|- (/) e. _V |
10 |
|
vex |
|- x e. _V |
11 |
|
en2sn |
|- ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) |
12 |
9 10 11
|
mp2an |
|- { (/) } ~~ { x } |
13 |
8 12
|
eqbrtri |
|- 1o ~~ { x } |
14 |
|
endom |
|- ( 1o ~~ { x } -> 1o ~<_ { x } ) |
15 |
13 14
|
ax-mp |
|- 1o ~<_ { x } |
16 |
|
domssr |
|- ( ( A e. _V /\ { x } C_ A /\ 1o ~<_ { x } ) -> 1o ~<_ A ) |
17 |
15 16
|
mp3an3 |
|- ( ( A e. _V /\ { x } C_ A ) -> 1o ~<_ A ) |
18 |
17
|
ex |
|- ( A e. _V -> ( { x } C_ A -> 1o ~<_ A ) ) |
19 |
7 18
|
syl5 |
|- ( A e. _V -> ( x e. A -> 1o ~<_ A ) ) |
20 |
19
|
exlimdv |
|- ( A e. _V -> ( E. x x e. A -> 1o ~<_ A ) ) |
21 |
6 20
|
biimtrid |
|- ( A e. _V -> ( A =/= (/) -> 1o ~<_ A ) ) |
22 |
|
1n0 |
|- 1o =/= (/) |
23 |
|
dom0 |
|- ( 1o ~<_ (/) <-> 1o = (/) ) |
24 |
22 23
|
nemtbir |
|- -. 1o ~<_ (/) |
25 |
|
breq2 |
|- ( A = (/) -> ( 1o ~<_ A <-> 1o ~<_ (/) ) ) |
26 |
24 25
|
mtbiri |
|- ( A = (/) -> -. 1o ~<_ A ) |
27 |
26
|
necon2ai |
|- ( 1o ~<_ A -> A =/= (/) ) |
28 |
21 27
|
impbid1 |
|- ( A e. _V -> ( A =/= (/) <-> 1o ~<_ A ) ) |
29 |
5 28
|
bitrd |
|- ( A e. _V -> ( (/) ~< A <-> 1o ~<_ A ) ) |
30 |
2 4 29
|
pm5.21nii |
|- ( (/) ~< A <-> 1o ~<_ A ) |