Description: Alternate proof of 0sdom1dom , shorter but requiring ax-un . (Contributed by NM, 28-Sep-2004) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 0sdom1domALT | |- ( (/) ~< A <-> 1o ~<_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 | |- (/) e. _om |
|
2 | sucdom | |- ( (/) e. _om -> ( (/) ~< A <-> suc (/) ~<_ A ) ) |
|
3 | 1 2 | ax-mp | |- ( (/) ~< A <-> suc (/) ~<_ A ) |
4 | df-1o | |- 1o = suc (/) |
|
5 | 4 | breq1i | |- ( 1o ~<_ A <-> suc (/) ~<_ A ) |
6 | 3 5 | bitr4i | |- ( (/) ~< A <-> 1o ~<_ A ) |