Metamath Proof Explorer


Theorem 0sdomg

Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion 0sdomg
|- ( A e. V -> ( (/) ~< A <-> A =/= (/) ) )

Proof

Step Hyp Ref Expression
1 0domg
 |-  ( A e. V -> (/) ~<_ A )
2 brsdom
 |-  ( (/) ~< A <-> ( (/) ~<_ A /\ -. (/) ~~ A ) )
3 2 baib
 |-  ( (/) ~<_ A -> ( (/) ~< A <-> -. (/) ~~ A ) )
4 1 3 syl
 |-  ( A e. V -> ( (/) ~< A <-> -. (/) ~~ A ) )
5 ensymb
 |-  ( (/) ~~ A <-> A ~~ (/) )
6 en0
 |-  ( A ~~ (/) <-> A = (/) )
7 5 6 bitri
 |-  ( (/) ~~ A <-> A = (/) )
8 7 necon3bbii
 |-  ( -. (/) ~~ A <-> A =/= (/) )
9 4 8 bitrdi
 |-  ( A e. V -> ( (/) ~< A <-> A =/= (/) ) )