Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | 0sdomg | |- ( A e. V -> ( (/) ~< A <-> A =/= (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0domg | |- ( A e. V -> (/) ~<_ A ) |
|
2 | brsdom | |- ( (/) ~< A <-> ( (/) ~<_ A /\ -. (/) ~~ A ) ) |
|
3 | 2 | baib | |- ( (/) ~<_ A -> ( (/) ~< A <-> -. (/) ~~ A ) ) |
4 | 1 3 | syl | |- ( A e. V -> ( (/) ~< A <-> -. (/) ~~ A ) ) |
5 | ensymb | |- ( (/) ~~ A <-> A ~~ (/) ) |
|
6 | en0 | |- ( A ~~ (/) <-> A = (/) ) |
|
7 | 5 6 | bitri | |- ( (/) ~~ A <-> A = (/) ) |
8 | 7 | necon3bbii | |- ( -. (/) ~~ A <-> A =/= (/) ) |
9 | 4 8 | bitrdi | |- ( A e. V -> ( (/) ~< A <-> A =/= (/) ) ) |