| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 2 | 
							
								
							 | 
							nnexpcl | 
							 |-  ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( P ^ K ) e. NN )  | 
						
						
							| 4 | 
							
								
							 | 
							0sgm | 
							 |-  ( ( P ^ K ) e. NN -> ( 0 sigma ( P ^ K ) ) = ( # ` { x e. NN | x || ( P ^ K ) } ) ) | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( # ` { x e. NN | x || ( P ^ K ) } ) ) | 
						
						
							| 6 | 
							
								
							 | 
							fzfid | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( 0 ... K ) e. Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( n e. ( 0 ... K ) |-> ( P ^ n ) ) = ( n e. ( 0 ... K ) |-> ( P ^ n ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							dvdsppwf1o | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( n e. ( 0 ... K ) |-> ( P ^ n ) ) : ( 0 ... K ) -1-1-onto-> { x e. NN | x || ( P ^ K ) } ) | 
						
						
							| 9 | 
							
								6 8
							 | 
							hasheqf1od | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( # ` ( 0 ... K ) ) = ( # ` { x e. NN | x || ( P ^ K ) } ) ) | 
						
						
							| 10 | 
							
								5 9
							 | 
							eqtr4d | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( # ` ( 0 ... K ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> K e. NN0 )  | 
						
						
							| 12 | 
							
								
							 | 
							nn0uz | 
							 |-  NN0 = ( ZZ>= ` 0 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eleqtrdi | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> K e. ( ZZ>= ` 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							hashfz | 
							 |-  ( K e. ( ZZ>= ` 0 ) -> ( # ` ( 0 ... K ) ) = ( ( K - 0 ) + 1 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( # ` ( 0 ... K ) ) = ( ( K - 0 ) + 1 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nn0cn | 
							 |-  ( K e. NN0 -> K e. CC )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> K e. CC )  | 
						
						
							| 18 | 
							
								17
							 | 
							subid1d | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( K - 0 ) = K )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1d | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( ( K - 0 ) + 1 ) = ( K + 1 ) )  | 
						
						
							| 20 | 
							
								10 15 19
							 | 
							3eqtrd | 
							 |-  ( ( P e. Prime /\ K e. NN0 ) -> ( 0 sigma ( P ^ K ) ) = ( K + 1 ) )  |