Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | 0sn0ep | |- (/) _E { (/) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |- (/) e. _V |
|
2 | 1 | snid | |- (/) e. { (/) } |
3 | snex | |- { (/) } e. _V |
|
4 | 3 | epeli | |- ( (/) _E { (/) } <-> (/) e. { (/) } ) |
5 | 2 4 | mpbir | |- (/) _E { (/) } |