Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
|- (/) C_ ( Base ` C ) |
2 |
1
|
a1i |
|- ( C e. Cat -> (/) C_ ( Base ` C ) ) |
3 |
|
ral0 |
|- A. x e. (/) A. y e. (/) ( x (/) y ) C_ ( x ( Homf ` C ) y ) |
4 |
3
|
a1i |
|- ( C e. Cat -> A. x e. (/) A. y e. (/) ( x (/) y ) C_ ( x ( Homf ` C ) y ) ) |
5 |
|
f0 |
|- (/) : (/) --> (/) |
6 |
|
ffn |
|- ( (/) : (/) --> (/) -> (/) Fn (/) ) |
7 |
5 6
|
ax-mp |
|- (/) Fn (/) |
8 |
|
xp0 |
|- ( (/) X. (/) ) = (/) |
9 |
8
|
fneq2i |
|- ( (/) Fn ( (/) X. (/) ) <-> (/) Fn (/) ) |
10 |
7 9
|
mpbir |
|- (/) Fn ( (/) X. (/) ) |
11 |
10
|
a1i |
|- ( C e. Cat -> (/) Fn ( (/) X. (/) ) ) |
12 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
14 |
12 13
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
15 |
14
|
a1i |
|- ( C e. Cat -> ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
16 |
|
fvexd |
|- ( C e. Cat -> ( Base ` C ) e. _V ) |
17 |
11 15 16
|
isssc |
|- ( C e. Cat -> ( (/) C_cat ( Homf ` C ) <-> ( (/) C_ ( Base ` C ) /\ A. x e. (/) A. y e. (/) ( x (/) y ) C_ ( x ( Homf ` C ) y ) ) ) ) |
18 |
2 4 17
|
mpbir2and |
|- ( C e. Cat -> (/) C_cat ( Homf ` C ) ) |