| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0subgALT.z |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 3 |  | id |  |-  ( G e. Grp -> G e. Grp ) | 
						
							| 4 |  | grpmnd |  |-  ( G e. Grp -> G e. Mnd ) | 
						
							| 5 | 1 | 0subm |  |-  ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( G e. Grp -> { .0. } e. ( SubMnd ` G ) ) | 
						
							| 7 | 2 1 | od1 |  |-  ( G e. Grp -> ( ( od ` G ) ` .0. ) = 1 ) | 
						
							| 8 |  | 1nn |  |-  1 e. NN | 
						
							| 9 | 7 8 | eqeltrdi |  |-  ( G e. Grp -> ( ( od ` G ) ` .0. ) e. NN ) | 
						
							| 10 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 11 |  | fveq2 |  |-  ( a = .0. -> ( ( od ` G ) ` a ) = ( ( od ` G ) ` .0. ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( a = .0. -> ( ( ( od ` G ) ` a ) e. NN <-> ( ( od ` G ) ` .0. ) e. NN ) ) | 
						
							| 13 | 10 12 | ralsn |  |-  ( A. a e. { .0. } ( ( od ` G ) ` a ) e. NN <-> ( ( od ` G ) ` .0. ) e. NN ) | 
						
							| 14 | 9 13 | sylibr |  |-  ( G e. Grp -> A. a e. { .0. } ( ( od ` G ) ` a ) e. NN ) | 
						
							| 15 | 2 3 6 14 | finodsubmsubg |  |-  ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |