| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0subg.z |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 | 2 1 | grpidcl |  |-  ( G e. Grp -> .0. e. ( Base ` G ) ) | 
						
							| 4 | 3 | snssd |  |-  ( G e. Grp -> { .0. } C_ ( Base ` G ) ) | 
						
							| 5 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 6 | 5 | snnz |  |-  { .0. } =/= (/) | 
						
							| 7 | 6 | a1i |  |-  ( G e. Grp -> { .0. } =/= (/) ) | 
						
							| 8 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 9 | 2 8 1 | grplid |  |-  ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) | 
						
							| 10 | 3 9 | mpdan |  |-  ( G e. Grp -> ( .0. ( +g ` G ) .0. ) = .0. ) | 
						
							| 11 |  | ovex |  |-  ( .0. ( +g ` G ) .0. ) e. _V | 
						
							| 12 | 11 | elsn |  |-  ( ( .0. ( +g ` G ) .0. ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) = .0. ) | 
						
							| 13 | 10 12 | sylibr |  |-  ( G e. Grp -> ( .0. ( +g ` G ) .0. ) e. { .0. } ) | 
						
							| 14 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 15 | 1 14 | grpinvid |  |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 16 |  | fvex |  |-  ( ( invg ` G ) ` .0. ) e. _V | 
						
							| 17 | 16 | elsn |  |-  ( ( ( invg ` G ) ` .0. ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 18 | 15 17 | sylibr |  |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) e. { .0. } ) | 
						
							| 19 |  | oveq1 |  |-  ( a = .0. -> ( a ( +g ` G ) b ) = ( .0. ( +g ` G ) b ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( a = .0. -> ( ( a ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) b ) e. { .0. } ) ) | 
						
							| 21 | 20 | ralbidv |  |-  ( a = .0. -> ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } <-> A. b e. { .0. } ( .0. ( +g ` G ) b ) e. { .0. } ) ) | 
						
							| 22 |  | oveq2 |  |-  ( b = .0. -> ( .0. ( +g ` G ) b ) = ( .0. ( +g ` G ) .0. ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( b = .0. -> ( ( .0. ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) ) | 
						
							| 24 | 5 23 | ralsn |  |-  ( A. b e. { .0. } ( .0. ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) | 
						
							| 25 | 21 24 | bitrdi |  |-  ( a = .0. -> ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) ) | 
						
							| 26 |  | fveq2 |  |-  ( a = .0. -> ( ( invg ` G ) ` a ) = ( ( invg ` G ) ` .0. ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( a = .0. -> ( ( ( invg ` G ) ` a ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) e. { .0. } ) ) | 
						
							| 28 | 25 27 | anbi12d |  |-  ( a = .0. -> ( ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) <-> ( ( .0. ( +g ` G ) .0. ) e. { .0. } /\ ( ( invg ` G ) ` .0. ) e. { .0. } ) ) ) | 
						
							| 29 | 5 28 | ralsn |  |-  ( A. a e. { .0. } ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) <-> ( ( .0. ( +g ` G ) .0. ) e. { .0. } /\ ( ( invg ` G ) ` .0. ) e. { .0. } ) ) | 
						
							| 30 | 13 18 29 | sylanbrc |  |-  ( G e. Grp -> A. a e. { .0. } ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) ) | 
						
							| 31 | 2 8 14 | issubg2 |  |-  ( G e. Grp -> ( { .0. } e. ( SubGrp ` G ) <-> ( { .0. } C_ ( Base ` G ) /\ { .0. } =/= (/) /\ A. a e. { .0. } ( A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } /\ ( ( invg ` G ) ` a ) e. { .0. } ) ) ) ) | 
						
							| 32 | 4 7 30 31 | mpbir3and |  |-  ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |